Indicator | Value |
---|---|
Accuracy | 0.99160 |
Precision | 0.99173 |
Recall | 0.99154 |
F1-Score | 0.99161 |
Confusion Matrix
[[ 977 0 0 0 0 0 2 0 0 1]
[ 0 1133 1 1 0 0 0 0 0 0]
[ 1 1 1024 0 0 0 1 4 1 0]
[ 0 0 1 1000 0 5 0 1 0 3]
[ 0 0 2 0 964 0 1 2 1 12]
[ 1 0 0 4 0 885 1 0 0 1]
[ 1 3 0 0 0 1 953 0 0 0]
[ 0 7 6 0 2 0 0 1009 0 4]
[ 1 0 1 1 0 1 0 0 965 5]
[ 0 0 0 0 3 0 0 0 0 1006]]
Class-0 | Precision: 0.99592, Recall: 0.99694, F1-Score: 0.99643
Class-1 | Precision: 0.99038, Recall: 0.99824, F1-Score: 0.99430
Class-2 | Precision: 0.98937, Recall: 0.99225, F1-Score: 0.99081
Class-3 | Precision: 0.99404, Recall: 0.99010, F1-Score: 0.99206
Class-4 | Precision: 0.99484, Recall: 0.98167, F1-Score: 0.98821
Class-5 | Precision: 0.99215, Recall: 0.99215, F1-Score: 0.99215
Class-6 | Precision: 0.99478, Recall: 0.99478, F1-Score: 0.99478
Class-7 | Precision: 0.99311, Recall: 0.98152, F1-Score: 0.98728
Class-8 | Precision: 0.99793, Recall: 0.99076, F1-Score: 0.99433
Class-9 | Precision: 0.97481, Recall: 0.99703, F1-Score: 0.98579
Total | Accuracy: 0.99160, Precision: 0.99173, Recall: 0.99154, F1-Score: 0.99161
- Python 3.7.6
- Tensorflow 2.1.0
- Numpy 1.18.1
- Matplotlib 3.1.3
[1] Xiang Li et al. (2019). Selective Kernel Networks. arXiv preprint arXiv:1903.06586.