- Statically Typed - 100% statically typed using code generation. Drop-in replacement, no reflect/type-assertion.
- Scale Efficiently - thundering herd protection via pub/sub.
- Cluster Support - same API for redis & redis cluster.
- Memoize - dynamic key params based on code generation.
- Versioning - cache versioning for better management.
- Pipeline - reduce io cost by redis pipeline.
π Read this first: Caches, Promises and Locks. This is how caching part works in cacheme.
π Real world example with Echo and Ent: https://github.com/Yiling-J/echo-ent-cacheme-example
// old
id, err := strconv.ParseInt(c.Param("id"), 10, 64)
comment, err := ent.Comment.Get(context.Background(), int(id))
// new
comment, err := cacheme.CommentCacheStore.Get(c.Request().Context(), c.Param("id"))
go get github.com/Yiling-J/cacheme-go/cmd
After installing cacheme-go
codegen, go to the root directory(or the directory you think cacheme should stay) of your project, and run:
go run github.com/Yiling-J/cacheme-go/cmd init
The command above will generate cacheme
directory under current directory:
βββ cacheme
βββ fetcher
Β Β βΒ Β βββ fetcher.go
βββ schema
βββ schema.go
It's up to you where the cacheme directory should be, just remember to use the right directory in Store Generation step.
Edit schema.go
and add some schemas:
package schema
import (
"time"
cacheme "github.com/Yiling-J/cacheme-go"
)
var (
// default prefix for redis keys
Prefix = "cacheme"
// store schemas
Stores = []*cacheme.StoreSchema{
{
Name: "Simple",
Key: "simple:{{.ID}}",
To: "",
Version: 1,
TTL: 5 * time.Minute,
Singleflight: false,
MetaData: false,
},
}
)
More details here
Run code generation from the root directory of the project as follows:
# this will use default schema path ./cacheme/schema
go run github.com/Yiling-J/cacheme-go/cmd generate
Or you can use custom schema path:
go run github.com/Yiling-J/cacheme-go/cmd generate ./yours/cacheme/schema
This produces the following files:
βββ cacheme
Β Β βββ fetcher
Β Β βΒ Β βββ fetcher.go
βββ schema
βΒ Β βββ schema.go
βββ store
β βββ base.go
β βββ simple.go
βββ store.go
If you update schema, just run generate
again.
Each cache store can provide a fetch function in fetcher.go
, you should call this Setup
function before create client:
import "your/cacheme/store"
func Setup() {
store.SimpleCacheStore.Fetch = func(ctx context.Context, ID string) (string, error) {
return ID, nil
}
}
You can setup fetch functions in any place, using any pattern, not restricted to this file. Just make sure you have a fetch function when using store.
import (
"your_project/cacheme"
"your_project/cacheme/fetcher"
)
func main() {
// setup fetcher
fetcher.Setup()
// create client
client := cacheme.New(
redis.NewClient(&redis.Options{
Addr: "localhost:6379",
Password: "",
DB: 0,
}),
)
// or cluster client
client := cacheme.NewCluster(
redis.NewClusterClient(&redis.ClusterOptions{
Addrs: []string{
":7000",
":7001",
":7002"},
}),
)
}
Get cached result. If not in cache, call fetch function and store data to Redis.
// "foo" is the {{.ID}} part of the schema
result, err := client.SimpleCacheStore.Get(ctx, "foo")
Get multiple keys from multiple stores using pipeline. For each key, if not in cache, call fetch function and store data to Redis.
- single store
pipeline := client.NewPipeline()
ids := []string{"1", "2", "3", "4"}
var ps []*store.SimplePromise
for _, i := range ids {
promise, err := client.SimpleCacheStore.GetP(ctx, pipeline, i)
ps = append(ps, promise)
}
err = pipeline.Execute(ctx)
fmt.Println(err)
for _, promise := range ps {
r, err := promise.Result()
fmt.Println(r, err)
}
Consider using GetM
API for single store, see GetM
example below.
- multiple stores
// same pipeline for different stores
pipeline := client.NewPipeline()
ids := []string{"1", "2", "3", "4"}
var ps []*store.SimplePromise // cache string
var psf []*store.FooPromise // cache model.Foo struct
for _, i := range ids {
promise, err := client.SimpleCacheStore.GetP(ctx, pipeline, i)
ps = append(ps, promise)
}
for _, i := range ids {
promise, err := client.FooCacheStore.GetP(ctx, pipeline, i)
psf = append(psf, promise)
}
// execute only once
err = pipeline.Execute(ctx)
// simple store results
for _, promise := range ps {
r, err := promise.Result()
fmt.Println(r, err)
}
// foo store results
for _, promise := range psf {
r, err := promise.Result()
fmt.Println(r, err)
}
Get multiple keys from same store, also using Redis pipeline. For each key, if not in cache, call fetch function and store data to Redis.
qs, err := client.SimpleCacheStore.GetM("foo").GetM("bar").GetM("xyz").Do(ctx)
// qs is a queryset struct, support two methods: GetSlice and Get
// GetSlice return ordered results slice
r, err := qs.GetSlice() // r: {foo_result, bar_result, xyz_result}
// Get return result of given param
r, err := qs.Get("foo") // r: foo_result
r, err := qs.Get("bar") // r: bar_result
r, err := qs.Get("fake") // error, because "fake" not in queryset
You can also initialize a getter using MGetter
getter := client.SimpleCacheStore.MGetter()
for _, id := range ids {
getter.GetM(id)
}
qs, err := getter.Do(c.Request().Context())
err := client.SimpleCacheStore.Invalid(ctx, "foo")
err := client.SimpleCacheStore.Update(ctx, "foo")
Only works when you enable MetaData
option in schema.
// invalid all version 1 simple cache
client.SimpleCacheStore.InvalidAll(ctx, "1")
Each schema has 5 fields:
- Name - store name, will be struct name in generated code, capital first.
- Key - key with variable using go template syntax, Variable name will be used in code generation.
- To - cached value, type of value will be used in code generation. Examples:
- string:
""
- int:
1
- struct:
model.Foo{}
- struct pointer:
&model.Foo{}
- slice:
[]model.Foo{}
- map:
map[model.Foo]model.Bar{}
- string:
- Version - version interface, can be
string
,int
, or callablefunc() string
. - TTL - redis ttl using go time.
- Singleflight - bool, if
true
, concurrent requests to same key on same executable will call Redis only once - MetaData - bool, if
true
, each store will save all generated keys to a Redis Set, soInvalidAll
method can work.
- Duplicate name/key is not allowed.
- Everytime you update schema, run code generation again.
- Not all store API support
Singleflight
option:Get
: support.GetM
: support. singleflight key will be the combination of all keys, order by alphabetical.
// these two will use same singleflight group key store.GetM("foo").GetM("bar").GetM("xyz").Do(ctx) Store.GetM("bar").GetM("foo").GetM("xyz").Do(ctx)
GetP
: not support.
Version
callable can help you managing version better. Example:// models.go const FooCacheVersion = "1" type Foo struct {} const BarCacheVersion = "1" type Bar struct {Foo: Foo}
// schema.go // version has 3 parts: foo version & bar version & global version number // if you change struct, update FooCacheVersion or BarCacheVersion // if you change fetcher function or ttl or something else, change global version number { Name: "Bar", Key: "bar:{{.ID}}:info", To: model.Bar{}, Version: func() string {return model.FooCacheVersion + model.BarCacheVersion + "1"}, TTL: 5 * time.Minute, },
- If set
Singleflight
totrue
, CachemeGet
command will be wrapped in a singleflight, so concurrent requests to same key will callRedis
only once. Let's use some example to explain this:- you have some products to sell, and thousands people will view the detail at same time, so the product key
product:1:info
may be hit 100000 times per second. Now you should turn on singleflight, and the actually redis hit may reduce to 5000. - you have cache for user shopping cart
user:123:cart
, only the user himself can see that. Now no need to use singleflight, becauese there shouldn't be concurrent requests to that key. - you are using serverless platform, AWS Lambda or similar. So each request runs in isolated environment, can't talk to each other through channels. Then singleflight make no sense.
- you have some products to sell, and thousands people will view the detail at same time, so the product key
- Full redis key has 3 parts: prefix + schema key + version.
Schema Key
category:{{.categoryID}}:book:{{.bookID}}
with prefixcacheme
, version 1 will generate key:Also you will seecacheme:category:1:book:3:v1
categoryID
andbookID
in generated code, as fetch func params.
You can use custom logger with cacheme, your logger should implement cacheme logger interface:
type Logger interface {
Log(store string, key string, op string)
}
Here store
is the store tag, key
is cache key without prefix, op
is operation type.
Default logger is NOPLogger
, just return and do nothing.
logger := &YourCustomLogger{}
client.SetLogger(logger)
- HIT: cache hit to redis, if you enable singleflight, grouped requests only log once.
- MISS: cache miss
- FETCH: fetch data from fetcher
Parallel benchmarks of Cacheme
- params: 10000/1000000 hits, 10 keys loop, TTL 10s,
SetParallelism(100)
, singleflight on
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkCachemeGetParallel-12 10000 198082 ns/op
BenchmarkCachemeGetParallel-12 1000000 9501 ns/op