-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7de1a94
commit bc4681a
Showing
102 changed files
with
39,826 additions
and
32,642 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
import imodels | ||
import pandas as pd | ||
import numpy as np | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.ensemble import RandomForestRegressor | ||
from imodels.tree.rf_plus.rf_plus.rf_plus_models import RandomForestPlusRegressor | ||
from sklearn.linear_model import LinearRegression | ||
from sklearn.metrics import roc_auc_score, f1_score, recall_score, precision_score, mean_squared_error, r2_score | ||
from imodels.tree.rf_plus.feature_importance.rfplus_explainer import * | ||
from sklearn.preprocessing import StandardScaler | ||
import copy | ||
import matplotlib.pyplot as plt | ||
import openml | ||
from sklearn.linear_model import Ridge | ||
|
||
|
||
|
||
def ablation_removal_negative(train_mean, data, feature_importance, feature_importance_rank, feature_index): | ||
data_copy = data.copy() | ||
indices = feature_importance_rank[:, feature_index] | ||
sum = 0 | ||
for i in range(data.shape[0]): | ||
if feature_importance[i, indices[i]] < 0: | ||
sum += 1 | ||
data_copy[i, indices[i]] = train_mean[indices[i]] | ||
print("Remove sum: ", sum) | ||
return data_copy | ||
|
||
|
||
def ablation_removal_positive(train_mean, data, feature_importance, feature_importance_rank, feature_index): | ||
data_copy = data.copy() | ||
indices = feature_importance_rank[:, feature_index] | ||
sum = 0 | ||
for i in range(data.shape[0]): | ||
if feature_importance[i, indices[i]] > 0: | ||
sum += 1 | ||
data_copy[i, indices[i]] = train_mean[indices[i]] | ||
print("Remove sum: ", sum) | ||
return data_copy | ||
|
||
def main(): | ||
X, y, _ = imodels.get_clean_dataset("diabetes_regr") | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) | ||
|
||
est = RandomForestRegressor(n_estimators=1, min_samples_leaf=5, bootstrap=True, max_features=0.33, random_state=42) | ||
est.fit(X_train, y_train) | ||
|
||
rf_plus_base_inbag = RandomForestPlusRegressor(rf_model=est, include_raw=False, fit_on="inbag", prediction_model=LinearRegression()) | ||
rf_plus_base_inbag.fit(X_train, y_train) | ||
|
||
rf_plus_base_inbag_with_raw = RandomForestPlusRegressor(rf_model=est, include_raw=True, fit_on="inbag", prediction_model=LinearRegression()) | ||
rf_plus_base_inbag_with_raw.fit(X_train, y_train) | ||
|
||
shap_explainer = shap.TreeExplainer(est) | ||
rf_plus_explainer = RFPlusMDI(rf_plus_base_inbag, evaluate_on="inbag", mode="only_k") | ||
rf_plus_with_raw_explainer = RFPlusMDI(rf_plus_base_inbag_with_raw, evaluate_on="inbag", mode="only_k") | ||
|
||
shap_train = shap_explainer.shap_values(X_train, check_additivity=False) | ||
shap_train_neg_rank = np.argsort(shap_train) | ||
shap_train_pos_rank = np.argsort(-shap_train) | ||
shap_test = shap_explainer.shap_values(X_test, check_additivity=False) | ||
shap_test_neg_rank = np.argsort(shap_test) | ||
shap_test_pos_rank = np.argsort(-shap_test) | ||
|
||
rf_plus_train = rf_plus_explainer.explain_linear_partial(X=X_train, y=None) | ||
rf_plus_train_neg_rank = np.argsort(rf_plus_train) | ||
rf_plus_train_pos_rank = np.argsort(-rf_plus_train) | ||
rf_plus_test = rf_plus_explainer.explain_linear_partial(X=X_test, y=None) | ||
rf_plus_test_neg_rank = np.argsort(rf_plus_test) | ||
rf_plus_test_pos_rank = np.argsort(-rf_plus_test) | ||
|
||
rf_plus_train_with_raw = rf_plus_with_raw_explainer.explain_linear_partial(X=X_train, y=None) | ||
rf_plus_train_with_raw_neg_rank = np.argsort(rf_plus_train_with_raw) | ||
rf_plus_train_with_raw_pos_rank = np.argsort(-rf_plus_train_with_raw) | ||
rf_plus_test_with_raw = rf_plus_with_raw_explainer.explain_linear_partial(X=X_test, y=None) | ||
rf_plus_test_with_raw_neg_rank = np.argsort(rf_plus_test_with_raw) | ||
rf_plus_test_with_raw_pos_rank = np.argsort(-rf_plus_test_with_raw) | ||
|
||
y_pred_mean_shap_train_pos = [] | ||
y_pred_mean_shap_train_neg = [] | ||
y_pred_mean_rf_plus_train_pos = [] | ||
y_pred_mean_rf_plus_train_neg = [] | ||
y_pred_mean_rf_plus_with_raw_train_pos = [] | ||
y_pred_mean_rf_plus_with_raw_train_neg = [] | ||
|
||
y_pred_mean_shap_test_pos = [] | ||
y_pred_mean_shap_test_neg = [] | ||
y_pred_mean_rf_plus_test_pos = [] | ||
y_pred_mean_rf_plus_test_neg = [] | ||
y_pred_mean_rf_plus_with_raw_test_pos = [] | ||
y_pred_mean_rf_plus_with_raw_test_neg = [] | ||
|
||
#train_mean = np.mean(X_train, axis=0) | ||
train_mean = np.zeros(X_train.shape[1]) | ||
ablation_model = est | ||
|
||
# Shap Train | ||
ablation_data = copy.deepcopy(X_train) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_train_pos.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_positive(train_mean, ablation_data, shap_train, shap_train_pos_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_train_pos.append(np.mean(y_pred)) | ||
|
||
ablation_data = copy.deepcopy(X_train) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_train_neg.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_negative(train_mean, ablation_data, shap_train, shap_train_neg_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_train_neg.append(np.mean(y_pred)) | ||
|
||
# Shap Test | ||
ablation_data = copy.deepcopy(X_test) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_test_pos.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_positive(train_mean, ablation_data, shap_test, shap_test_pos_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_test_pos.append(np.mean(y_pred)) | ||
|
||
ablation_data = copy.deepcopy(X_test) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_test_neg.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_negative(train_mean, ablation_data, shap_test, shap_test_neg_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_shap_test_neg.append(np.mean(y_pred)) | ||
|
||
# RF Plus Train | ||
ablation_data = copy.deepcopy(X_train) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_train_pos.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_positive(train_mean, ablation_data, rf_plus_train, rf_plus_train_pos_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_train_pos.append(np.mean(y_pred)) | ||
|
||
ablation_data = copy.deepcopy(X_train) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_train_neg.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_negative(train_mean, ablation_data, rf_plus_train, rf_plus_train_neg_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_train_neg.append(np.mean(y_pred)) | ||
|
||
# RF Plus Test | ||
ablation_data = copy.deepcopy(X_test) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_test_pos.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_positive(train_mean, ablation_data, rf_plus_test, rf_plus_test_pos_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_test_pos.append(np.mean(y_pred)) | ||
|
||
ablation_data = copy.deepcopy(X_test) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_test_neg.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_negative(train_mean, ablation_data, rf_plus_test, rf_plus_test_neg_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_test_neg.append(np.mean(y_pred)) | ||
|
||
# RF Plus with Raw Train | ||
ablation_data = copy.deepcopy(X_train) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_train_pos.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_positive(train_mean, ablation_data, rf_plus_train_with_raw, rf_plus_train_with_raw_pos_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_train_pos.append(np.mean(y_pred)) | ||
|
||
ablation_data = copy.deepcopy(X_train) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_train_neg.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_negative(train_mean, ablation_data, rf_plus_train_with_raw, rf_plus_train_with_raw_neg_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_train_neg.append(np.mean(y_pred)) | ||
|
||
# RF Plus with Raw Test | ||
ablation_data = copy.deepcopy(X_test) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_test_pos.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_positive(train_mean, ablation_data, rf_plus_test_with_raw, rf_plus_test_with_raw_pos_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_test_pos.append(np.mean(y_pred)) | ||
|
||
ablation_data = copy.deepcopy(X_test) | ||
y_pred_before = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_test_neg.append(np.mean(y_pred_before)) | ||
for i in range(ablation_data.shape[1]): | ||
ablation_data = ablation_removal_negative(train_mean, ablation_data, rf_plus_test_with_raw, rf_plus_test_with_raw_neg_rank, i) | ||
y_pred = ablation_model.predict(ablation_data) | ||
y_pred_mean_rf_plus_with_raw_test_neg.append(np.mean(y_pred)) | ||
|
||
# make all positive in one plot | ||
plt.plot(y_pred_mean_shap_train_pos, label="Shap Train") | ||
plt.plot(y_pred_mean_rf_plus_train_pos, label="RF Plus Train") | ||
plt.plot(y_pred_mean_rf_plus_with_raw_train_pos, label="RF Plus with Raw Train") | ||
plt.legend() | ||
plt.title("All Positive Train") | ||
plt.savefig("all_positive_train.png") | ||
plt.clf() | ||
|
||
plt.plot(y_pred_mean_shap_test_pos, label="Shap Test") | ||
plt.plot(y_pred_mean_rf_plus_test_pos, label="RF Plus Test") | ||
plt.plot(y_pred_mean_rf_plus_with_raw_test_pos, label="RF Plus with Raw Test") | ||
plt.legend() | ||
plt.title("All Positive Test") | ||
plt.savefig("all_positive_test.png") | ||
plt.clf() | ||
|
||
# make all negative in one plot | ||
plt.plot(y_pred_mean_shap_train_neg, label="Shap Train") | ||
plt.plot(y_pred_mean_rf_plus_train_neg, label="RF Plus Train") | ||
plt.plot(y_pred_mean_rf_plus_with_raw_train_neg, label="RF Plus with Raw Train") | ||
plt.legend() | ||
plt.title("All Negative Train") | ||
plt.savefig("all_negative_train.png") | ||
plt.clf() | ||
|
||
plt.plot(y_pred_mean_shap_test_neg, label="Shap Test") | ||
plt.plot(y_pred_mean_rf_plus_test_neg, label="RF Plus Test") | ||
plt.plot(y_pred_mean_rf_plus_with_raw_test_neg, label="RF Plus with Raw Test") | ||
plt.legend() | ||
plt.title("All Negative Test") | ||
plt.savefig("all_negative_test.png") | ||
plt.clf() | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
#!/bin/bash | ||
|
||
slurm_script="00_ablation_regression_script.sh" | ||
|
||
for rep in {1..2} | ||
do | ||
sbatch $slurm_script $rep # Submit SLURM job using the specified script | ||
sleep 2 | ||
done |
Oops, something went wrong.