Skip to content

A library to help student calculate in the course DIgital Image Processing

Notifications You must be signed in to change notification settings

YugnatD/DigImpro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 

Repository files navigation

DigImpro

Simple library coded in TI Basic to help student with the course of Digital Image Processing.

Implemented functions

  • Conv2d(m, k)
  • conv1d(f, h)
  • bilinear(x,y,m,v)
  • nearestneighbor(x,y,m,v)
  • covariance_vec(x,y,b,v)
  • covariancemat(x,b,v)
  • erode(m,k)
  • dilation(m,k)
  • open(m,k)
  • close(m,k)
  • hitormiss(m,b)
  • white_top_hat(m,b,v)
  • black_top_hat(m,b,v)
  • dft(x)
  • idft(x)
  • dft_2d(m)
  • idft_2d(m)
  • bayes_osc(x1,x2,a)
  • morpho_grad_in(m,b)
  • morpho_grad_out(m,b)
  • morpho_grad(m,b)

Tested on

  • TI-nspire CX II-T CAS

Paramters of the functions

  • Conv2D(m,k)
    • m: matrix
    • k: kernel
  • Conv1D(f,h)
    • f: vector 1
    • k: vector 2
  • bilinear(x,y,m,v)
    • x: x coordinate
    • y: y coordinate
    • m: matrix
    • v: verbose mode
  • nearestneighbor(x,y,m)
    • x: x coordinate
    • y: y coordinate
    • m: matrix
  • covariance_vec(x,y,b,v)
    • x: vector x
    • y: vector y
    • b: bias (0 = no bias / N-1 | 1 = bias / N)
    • v: verbose mode
  • covariancemat(x,b,v)
    • x: matrix
    • b: bias (0 = no bias / N-1 | 1 = bias / N)
    • v: verbose mode
  • Morphological Transformation
    • erode(m,k)
    • dilation(m,k)
    • open(m,k)
    • close(m,k)
    • white_top_hat(m,b,v)
    • black_top_hat(m,b,v)
    • morpho_grad_in(m,b)
    • morpho_grad_out(m,b)
    • morpho_grad(m,b)
      • m: matrix
      • k-b: structucual matrix (put 1 where you need)
      • v: verbose mode
  • hitormiss(m,b,v)
    • m: matrix
    • b: structural element (must be 0,1, or infinite for dont care)
    • v: verbose mode
  • Fourier
    • dft(x)
    • idft(x)
    • dft_2d(m)
    • idft_2d(m)
      • x: vector line
      • m: matrix
  • Pattern Classification
    • bayes_osc(x1,x2,a,b) -> bayes Optimal statistical classifier
      • x1: classe1
      • x2: classe2
      • a: formula to use, page 926
      • b: bias

WARNING

in TI BASIC the index of the matrix start from 1, not from 0.

About

A library to help student calculate in the course DIgital Image Processing

Topics

Resources

Stars

Watchers

Forks