Table of Contents
- clone the project
git clone https://github.com/ZHU-Zhiyu/High-Rank_RGB-Event_Tracker.git
- FE108
* Download data from FE108
* Transfer and clip data into h5py format
sh python ./Utils/Evt_convert.py
The directory should have the below format:
Format of FE108 (click to expand)
```Shell
├── FE108 dataset (108 sequences)
├── airplane
├── inter3_stack
├── 0001_1.jpg
├── 0001_2.jpg
├── 0001_3.jpg
├── 0002_1.jpg
├── ...
├── img
├── 0001.jpg
├── 0002.jpg
├── ...
├── events.aedat4
├── groundtruth_rect.txt
├── airplane_motion
├── ...
├── ...
├── Event file(108 sequences)
├── airplane.h5
├── airplane_motion.h5
├── ...
```
</details>
-
COESOT * Download data from COESOT * Transfer and clip data into mat files
python ./COESOT/data.py
The directory should have the below format:
Format of COESOT (click to expand)
├── COESOT dataset ├── Training Subset (827 sequences) ├── dvSave-2021_09_01_06_59_10 ├── dvSave-2021_09_01_06_59_10.aedat4 ├── groundtruth.txt ├── absent.txt ├── start_end_index.txt ├── ... ├── trainning voxel (827 sequences) ├── dvSave-2022_03_21_09_05_49 ├── dvSave-2022_03_21_09_05_49_voxel ├── frame0000.mat ├── frame0001.mat ├── ... ├── ... ├── Testing Subset (528 sequences) ├── dvSave-2021_07_30_11_04_12 ├── dvSave-2021_07_30_11_04_12_aps ├── dvSave-2021_07_30_11_04_12_dvs ├── dvSave-2021_07_30_11_04_12.aedat4 ├── groundtruth.txt ├── absent.txt ├── start_end_index.txt ├── ... ├── testing voxel (528 sequences) ├── dvSave-2022_03_21_11_12_27 ├── dvSave-2022_03_21_11_12_27_voxel ├── frame0000.mat ├── frame0001.mat ├── ... ├── ...
-
One-stream tracker: CEUTrack
conda create -n CEUTrack python==3.8 conda activate CEUTrack cd ./CEUTrack sh install.sh
-
Two-streams tracker: MonTrack
conda create -n montrack python==3.8 conda activate montrack cd ./MonTrack conda install -c pytorch pytorch=1.5 torchvision=0.6.1 cudatoolkit=10.2 conda install matplotlib pandas tqdm pip install opencv-python tb-nightly visdom scikit-image tikzplotlib gdown conda install cython scipy sudo apt-get install libturbojpeg pip install pycocotools jpeg4py pip install wget yacs pip install shapely==1.6.4.post2 python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()" python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"
Then install KNN_CUDA
-
One-stream tracker: CEUTrack
cd CEUTrack sh train.sh
-
Two-streams tracker: MonTrack download SwinV2 Tiny/Base and put them into
./ltr/checkpoint
Then run the following code
cd ./MonTrack/ltr sh train.sh
Download pretrained weights Google Drive baidu:coming soon
-
One stream tracker: MonTrack
sh eval.sh
Then install KNN_CUDA
-
Two-streams tracker: CEUTrack
sh eval.sh
Distributed under the MIT License. See LICENSE.txt
for more information.
Email - Zhu Zhiyu
Thanks to FE108, COESOT datasets, TransT and OsTrack.
If you find the project is interesting, please cite
@article{zhu2023cross,
title={Cross-modal Orthogonal High-rank Augmentation for RGB-Event Transformer-trackers},
author={Zhu, Zhiyu and Hou, Junhui and Wu, Dapeng Oliver},
journal={International Conference on Computer Vision},
year={2023}
}
@article{zhu2022learning,
title={Learning Graph-embedded Key-event Back-tracing for Object Tracking in Event Clouds},
author={Zhu, Zhiyu and Hou, Junhui and Lyu, Xianqiang},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={7462--7476},
year={2022}
}
Template from othneildrew.