Skip to content

ZikangZhou/HiVT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction

This repository contains the official implementation of HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction published in CVPR 2022.

Gettting Started

1. Clone this repository:

git clone https://github.com/ZikangZhou/HiVT.git
cd HiVT

2. Create a conda environment and install the dependencies:

conda create -n HiVT python=3.8
conda activate HiVT
conda install pytorch==1.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install pytorch-geometric==1.7.2 -c rusty1s -c conda-forge
conda install pytorch-lightning==1.5.2 -c conda-forge

3. Download Argoverse Motion Forecasting Dataset v1.1. After downloading and extracting the tar.gz files, the dataset directory should be organized as follows:

/path/to/dataset_root/
├── train/
|   └── data/
|       ├── 1.csv
|       ├── 2.csv
|       ├── ...
└── val/
    └── data/
        ├── 1.csv
        ├── 2.csv
        ├── ...

4. Install Argoverse 1 API.

Training

To train HiVT-64:

python train.py --root /path/to/dataset_root/ --embed_dim 64

To train HiVT-128:

python train.py --root /path/to/dataset_root/ --embed_dim 128

Note: When running the training script for the first time, it will take several hours to preprocess the data (~3.5 hours on my machine). Training on an RTX 2080 Ti GPU takes 35-40 minutes per epoch.

During training, the checkpoints will be saved in lightning_logs/ automatically. To monitor the training process:

tensorboard --logdir lightning_logs/

Evaluation

To evaluate the prediction performance:

python eval.py --root /path/to/dataset_root/ --batch_size 32 --ckpt_path /path/to/your_checkpoint.ckpt

Pretrained Models

We provide the pretrained HiVT-64 and HiVT-128 in checkpoints/. You can evaluate the pretrained models using the aforementioned evaluation command, or have a look at the training process via TensorBoard:

tensorboard --logdir checkpoints/

Results

Quantitative Results

For this repository, the expected performance on Argoverse 1.1 validation set is:

Models minADE minFDE MR
HiVT-64 0.69 1.03 0.10
HiVT-128 0.66 0.97 0.09

Qualitative Results

Citation

If you found this repository useful, please consider citing our work:

@inproceedings{zhou2022hivt,
  title={HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction},
  author={Zhou, Zikang and Ye, Luyao and Wang, Jianping and Wu, Kui and Lu, Kejie},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

License

This repository is licensed under Apache 2.0.