Quick Start • Trained Model • Paper • Citation
Repo for ACL 2023 paper MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction.
MvP is an element order-based prompt learning method:
- MvP unifies various tuple prediction tasks through the combination of elements:
- MvP aggregates multi-view results by considering permutations of elements:
MvP achieves state-of-the-art performance across 10 datasets encompassing 4 ABSA tasks with a single model:
MvP with T5-base outperforms large language models ChatGPT (gpt-3.5-turbo) by a large margin, even in few-shot transfer settings:
conda create -n mvp python=3.8
conda activate mvp
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install -r requirements.txt
We release the multi-task MvP model (one seed): mvp-unified-base
[Google Drive]
You may download the model with gdown (pip install gdown
):
pip install gdown
mkdir -p outputs && cd outputs
gdown 1FMTuS4DRquLjZ3xWHLDh25W31d4dgQph
tar -xvf unified_model.tar.gz
mv src/outputs/unified unified
cd ..
then run evaluation:
bash scripts/eval_unified.sh
then you will get following results in outputs/unified/top5_seed10/result.txt
:
aste: laptop14: precision: 67.64 recall: 64.14 F1 = 65.84
aste: rest14: precision: 74.49 recall: 77.73 F1 = 76.08
aste: rest15: precision: 68.73 recall: 71.13 F1 = 69.91
aste: rest16: precision: 72.15 recall: 72.57 F1 = 72.36
tasd: rest15: precision: 69.88 recall: 62.60 F1 = 66.04
tasd: rest16: precision: 70.15 recall: 67.57 F1 = 68.84
acos: laptop16: precision: 44.75 recall: 44.64 F1 = 44.69
acos: rest16: precision: 60.86 recall: 59.84 F1 = 60.35
asqp: rest15: precision: 54.77 recall: 54.84 F1 = 54.81
asqp: rest16: precision: 58.29 recall: 60.70 F1 = 59.47
Average F1: 63.83899277391693
- Train unified models:
bash scripts/process_unify.sh # process data
bash scripts/run_unified.sh
- Train separate models:
bash scripts/run_main.sh
- Train with low-resource or cross-task transfer settings:
bash scripts/run_low_resource.sh
- Evaluate ChatGPT (gpt-3.5-turbo) baselines:
bash scripts/run_llms.sh
python llms/eval.py
If you find this repository helpful, please consider citing our paper:
@inproceedings{gou-etal-2023-mvp,
title = "{M}v{P}: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction",
author = "Gou, Zhibin and
Guo, Qingyan and
Yang, Yujiu",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.240",
pages = "4380--4397",
}