Convert grayscale image to a colored image using different deep learning techniques.
We use 3 different models to try and colorize the grayscale image.
- Deep Koalarization [1]
- Inception-VGG AutoEncoder
- VGG AutoEncoder
- GAN (Experimental)
This project uses Microsoft COCO Datset[2]. This project uses 2017 train, validation and test images. But, any year data should work if retraining the model.
Place the images in ./data/train
, ./data/validation
and ./data/test
folders.
- Install Python 3.6
- Install
virtualenv
- Clone this repo
cd
into the repo- Create a virtual environment
- Run
pip install -r requirements.txt
(Userequirements-gpu.txt
if using a GPU)
This project is licensed under Apache License 2.0. The terms of the license can be found in LICENSE.
- Baldassarre, Federico, Diego González Morín, and Lucas Rodés-Guirao. "Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2." arXiv preprint arXiv:1712.03400 (2017).
- Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European conference on computer vision. Springer, Cham, 2014.