Skip to content

aalto-ics-kepaco/MKC_software

Repository files navigation

MKC

Multi-view Kernel Completion

(c) Sahely Bhadra sahely@iitpkd.ac.in Jun. 1, 2016.

This version is debugged by Xiangju Qin, a postdoctoral researcher in Prof. Tero Aittokallio's group at FIMM, university of Helsinki. I convey my regards to her. April, 2019.

Details of the software are available in http://arxiv.org/abs/1602.02518

This package contains following three version of proposed multi-view kernel completion method along with supporting function and scripts

  1. MKCsdp
  2. MKCapp
  3. MKCemdb(ht)

Details descriare :

function [PredK,S,objective,iOutput]=MKCsdp(K,MID,para,init)

This solve MKCsdp formulation input :

K: kernels matrix size N x N x M. K(n1,n2,m) =kenrel values among n1 and n2 datapoints in m view

MID: a matrix of NxM {0,1} matrix where MID(n,m) = 1 indicates nth data is known in mth view

para: contain usedefined parameters : para.c1 Withinviewloss + para.c2 betweenviewloss + para.c3 L21norm regularisation

init : if init =1 then S is initialized by assignning all off-diagonal element with same values otherwise it S is randomly initalized

Output:

PredK =\hat(K) : predicted kernel matrices of size NxNxM

S : Inter-view similarity matrix

objective : objective values

iOutput : intermediate objective function

function [PredK,A,S,obj,iOutput] = MKCapp(K,MID,para,init)

This solve MKCapp formulation

input :

K: kernels matrix size N x N x M. K(n1,n2,m) =kenrel values among n1 and n2 datapoints in m view

MID: a matrix of NxM {0,1} matrix where MID(n,m) = 1 indicates nth data is known in mth view

para: contain usedefined parameters : para.c1 Withinviewloss + para.c2 betweenviewloss + para.c3 L21norm regularisation

init : if init =1 then A^{(m)} is initialized by non diagonal selfrepresentative matrix of K^{(m)} otherwise it A^{(m)} is randomly initalized

Output:

PredK =\hat(K) : predicted kernel matrices of size NxNxM

A : learnt reconstruction matrix

S : Inter-view similarity matrix

objective : objective values

iOutput : intermediate objective function

function [PredK,A,S,obj,iOutput] = MKCemdbht(K,MID,para,init)

This solve MKCembdht formulation

input :

K: kernels matrix size N x N x M. K(n1,n2,m) =kenrel values among n1 and n2 datapoints in m view

MID: a matrix of NxM {0,1} matrix where MID(n,m) = 1 indicates nth data is known in mth view

para: contain usedefined parameters : para.c1 Withinviewloss + para.c2 betweenviewloss + para.c3 L21norm regularisation

init : if init =1 then A^{(m)} is initialized by non diagonal selfrepresentative matrix of K^{(m)} otherwise it A^{(m)} is randomly initalized

Output:

PredK =\hat(K) : predicted kernel matrices of size NxNxM

A : learnt reconstruction matrix

S : Inter-view similarity matrix

objective : objective values

iOutput : intermediate objective function

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages