Skip to content

machine learning for the atmospheric sciences - a CSU course

License

Notifications You must be signed in to change notification settings

abhishekh-srivastava/course_ml_ats

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ATS 780A7 - Machine Learning for the Atmospheric Sciences (Colorado State University)


Course materials of the python examples (.py), data (.csv,.nc), and jupyter notebooks (.ipynb) used in ATS 780A7 SP22, F23. The python examples and their data can just be downloaded or run on Google's Colaboratory.

Tensorflow Code


Code was written on an Apple M1 Max chip using python 3.10, tensorflow 2.7.0, and tensorflow-probability 0.15.0.

Python Environment

- conda create --name env-780A7f23 python=3.10.10
- conda activate env-780A7f23
- conda install -c apple -c conda-forge -c nodefaults tensorflow-deps
- python -m pip install tensorflow-macos==2.10.0
- python -m pip install tensorflow-metal==0.6.0
- pip install tensorflow-probability==0.15 silence-tensorflow
- conda install numpy scipy matplotlib scikit-learn jupyterlab
- pip install pandas statsmodels icecream palettable seaborn progressbar2 tabulate isort
- pip install tqdm pydot graphviz
- pip install -U scikit-image
- pip install shap

Extra Information


Credits

The majority of the materials were created by Dr. Elizabeth A. Barnes, while additional collaborators are specified in the code when relevant.

License

This project is licensed under an MIT license.

MIT © Elizabeth A. Barnes

About

machine learning for the atmospheric sciences - a CSU course

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%