Skip to content

abhishekrana/MaskRCNN_Tensorflow_Docker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MaskRCNN_Tensorflow_Docker

Integration of FastMaskRCNN + Tensorflow + Nvidia-docker. (Tested in Ubuntu 16.04)

  • Creates docker image "user/tensorflow_gpu_mrcnn" using Tensorflow_gpu + FastMaskRCNN dependencies
  • Creates docker container "user-mrcnn_tf1.1" from "user/tensorflow_gpu_mrcnn"
  • Clones FastMaskRCNN code inside MaskRCNN_Tensorflow_Docker/MRCNN/ (host)
  • Mounts MRCNN/ (host) at /home/user/ (docker) inside "user-mrcnn_tf1.1" container. (Host and Docker are now sharing the same code i.e. FastMaskRCNN. So code changes can be made at host side and code can be run inside the docker container)
  • Downloads/Copies datasets required for FastMaskRCNN inside FastMaskRCNN (visible at both host and docker due to mounting)
  • Runs FastMaskRCNN code to:
    • Generate annotations
    • Train the network

Prerequisite

  • Install Docker

Installation

$ cd MaskRCNN_Tensorflow_Docker
$ ./install.py

Training with CPU:
$ sudo nvidia-docker exec -it user-mrcnn_tf1.1 bash -c "cd MRCNN/FastMaskRCNN; export CUDA_VISIBLE_DEVICES= ; python train/train.py"

Training with GPU:
$ sudo nvidia-docker exec -it user-mrcnn_tf1.1 bash -c "cd MRCNN/FastMaskRCNN; python train/train.py"

Notes

  • Using Tensorflow 1.1 (due to issue #88 with TF 1.2)
  • Tested on
    • Ubuntu 16.04.1 x86_64
    • Kernel 4.8.0-56-generic
    • Cuda 8.0.61
    • CuDNN 5.1.10

Acknowledgment