Integration of FastMaskRCNN + Tensorflow + Nvidia-docker. (Tested in Ubuntu 16.04)
- Creates docker image "user/tensorflow_gpu_mrcnn" using Tensorflow_gpu + FastMaskRCNN dependencies
- Creates docker container "user-mrcnn_tf1.1" from "user/tensorflow_gpu_mrcnn"
- Clones FastMaskRCNN code inside MaskRCNN_Tensorflow_Docker/MRCNN/ (host)
- Mounts MRCNN/ (host) at /home/user/ (docker) inside "user-mrcnn_tf1.1" container. (Host and Docker are now sharing the same code i.e. FastMaskRCNN. So code changes can be made at host side and code can be run inside the docker container)
- Downloads/Copies datasets required for FastMaskRCNN inside FastMaskRCNN (visible at both host and docker due to mounting)
- Runs FastMaskRCNN code to:
- Generate annotations
- Train the network
- Install Docker
$ cd MaskRCNN_Tensorflow_Docker
$ ./install.py
Training with CPU:
$ sudo nvidia-docker exec -it user-mrcnn_tf1.1 bash -c "cd MRCNN/FastMaskRCNN; export CUDA_VISIBLE_DEVICES= ; python train/train.py"
Training with GPU:
$ sudo nvidia-docker exec -it user-mrcnn_tf1.1 bash -c "cd MRCNN/FastMaskRCNN; python train/train.py"
- Using Tensorflow 1.1 (due to issue #88 with TF 1.2)
- Tested on
- Ubuntu 16.04.1 x86_64
- Kernel 4.8.0-56-generic
- Cuda 8.0.61
- CuDNN 5.1.10