Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: Use common direction transform Jacobian #2782

Merged
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions Core/include/Acts/Utilities/JacobianHelpers.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
// This file is part of the Acts project.
//
// Copyright (C) 2023 CERN for the benefit of the Acts project
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#pragma once

#include "Acts/Definitions/Algebra.hpp"
#include "Acts/Utilities/VectorHelpers.hpp"

namespace Acts {

/// @brief Calculates the Jacobian for spherical to free
/// direction vector transformation
///
/// @note We use the direction vector as an input because
/// the trigonometric simplify that way
///
/// @param direction The normalised direction vector
///
/// @return The Jacobian d(dir_x, dir_y, dir_z) / d(phi, theta)
///
inline ActsMatrix<3, 2> sphericalToFreeDirectionJacobian(
andiwand marked this conversation as resolved.
Show resolved Hide resolved
const Vector3& direction) {
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);

// clang-format off
ActsMatrix<3, 2> jacobian;
jacobian <<
-direction.y(), cosTheta * cosPhi,
direction.x(), cosTheta * sinPhi,
0, -sinTheta;
// clang-format on

return jacobian;
}

/// @brief Calculates the Jacobian for free to spherical
/// direction vector transformation
///
/// @note We use the direction vector as an input because
/// the trigonometric simplify that way
///
/// @param direction The normalised direction vector
///
/// @return The Jacobian d(phi, theta) / d(dir_x, dir_y, dir_z)
///
inline ActsMatrix<2, 3> freeToSphericalDirectionJacobian(
const Vector3& direction) {
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);
ActsScalar invSinTheta = 1. / sinTheta;

// clang-format off
ActsMatrix<2, 3> jacobian;
jacobian <<
-sinPhi * invSinTheta, cosPhi * invSinTheta, 0,
cosPhi * cosTheta, sinPhi * cosTheta, -sinTheta;
// clang-format on

return jacobian;
}

} // namespace Acts
6 changes: 3 additions & 3 deletions Core/include/Acts/Utilities/VectorHelpers.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -132,18 +132,18 @@ double eta(const Eigen::MatrixBase<Derived>& v) noexcept {
/// @param direction for this evaluatoin
///
/// @return cos(phi), sin(phi), cos(theta), sin(theta), 1/sin(theta)
inline std::array<ActsScalar, 5> evaluateTrigonomics(const Vector3& direction) {
inline std::array<ActsScalar, 4> evaluateTrigonomics(const Vector3& direction) {
const ActsScalar x = direction(0); // == cos(phi) * sin(theta)
const ActsScalar y = direction(1); // == sin(phi) * sin(theta)
const ActsScalar z = direction(2); // == cos(theta)
// can be turned into cosine/sine
const ActsScalar cosTheta = z;
const ActsScalar sinTheta = std::hypot(x, y);
const ActsScalar sinTheta = std::sqrt(1 - z * z);
andiwand marked this conversation as resolved.
Show resolved Hide resolved
const ActsScalar invSinTheta = 1. / sinTheta;
const ActsScalar cosPhi = x * invSinTheta;
const ActsScalar sinPhi = y * invSinTheta;

return {cosPhi, sinPhi, cosTheta, sinTheta, invSinTheta};
return {cosPhi, sinPhi, cosTheta, sinTheta};
}

/// Helper method to extract the binning value from a 3D vector.
Expand Down
65 changes: 26 additions & 39 deletions Core/src/Propagator/detail/CovarianceEngine.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,14 @@

#include "Acts/Definitions/Common.hpp"
#include "Acts/Definitions/Tolerance.hpp"
#include "Acts/Definitions/TrackParametrization.hpp"
#include "Acts/EventData/GenericBoundTrackParameters.hpp"
#include "Acts/EventData/GenericCurvilinearTrackParameters.hpp"
#include "Acts/EventData/detail/CorrectedTransformationFreeToBound.hpp"
#include "Acts/EventData/detail/TransformationBoundToFree.hpp"
#include "Acts/EventData/detail/TransformationFreeToBound.hpp"
#include "Acts/Utilities/AlgebraHelpers.hpp"
#include "Acts/Utilities/JacobianHelpers.hpp"
#include "Acts/Utilities/Result.hpp"

#include <algorithm>
Expand All @@ -35,6 +37,7 @@ using CurvilinearState =
std::tuple<CurvilinearTrackParameters, Jacobian, double>;

/// @brief Evaluate the projection Jacobian from free to curvilinear parameters
/// without transport jacobian.
///
/// @param [in] direction Normalised direction vector
///
Expand All @@ -44,41 +47,36 @@ FreeToBoundMatrix freeToCurvilinearJacobian(const Vector3& direction) {
const double x = direction(0); // == cos(phi) * sin(theta)
const double y = direction(1); // == sin(phi) * sin(theta)
const double z = direction(2); // == cos(theta)
// can be turned into cosine/sine
const double cosTheta = z;
const double sinTheta = std::hypot(x, y);
const double invSinTheta = 1. / sinTheta;
const double cosPhi = x * invSinTheta;
const double sinPhi = y * invSinTheta;
// prepare the jacobian to curvilinear
FreeToBoundMatrix jacToCurv = FreeToBoundMatrix::Zero();
if (std::abs(cosTheta) < s_curvilinearProjTolerance) {
if (std::abs(z) < s_curvilinearProjTolerance) {
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);
// We normally operate in curvilinear coordinates defined as follows
jacToCurv(0, 0) = -sinPhi;
jacToCurv(0, 1) = cosPhi;
jacToCurv(1, 0) = -cosPhi * cosTheta;
jacToCurv(1, 1) = -sinPhi * cosTheta;
jacToCurv(1, 2) = sinTheta;
jacToCurv(eBoundLoc0, eFreePos0) = -sinPhi;
jacToCurv(eBoundLoc0, eFreePos1) = cosPhi;
// jacToCurv(eBoundLoc0, eFreePos2) = 0;
jacToCurv(eBoundLoc1, eFreePos0) = -cosPhi * cosTheta;
jacToCurv(eBoundLoc1, eFreePos1) = -sinPhi * cosTheta;
jacToCurv(eBoundLoc1, eFreePos2) = sinTheta;
} else {
// Under grazing incidence to z, the above coordinate system definition
// becomes numerically unstable, and we need to switch to another one
const double c = std::hypot(y, z);
const double invC = 1. / c;
jacToCurv(0, 1) = -z * invC;
jacToCurv(0, 2) = y * invC;
jacToCurv(1, 0) = c;
jacToCurv(1, 1) = -x * y * invC;
jacToCurv(1, 2) = -x * z * invC;
// jacToCurv(eBoundLoc0, eFreePos0) = 0;
jacToCurv(eBoundLoc0, eFreePos1) = -z * invC;
jacToCurv(eBoundLoc0, eFreePos2) = y * invC;
jacToCurv(eBoundLoc1, eFreePos0) = c;
jacToCurv(eBoundLoc1, eFreePos1) = -x * y * invC;
jacToCurv(eBoundLoc1, eFreePos2) = -x * z * invC;
andiwand marked this conversation as resolved.
Show resolved Hide resolved
}
// Time parameter
jacToCurv(5, 3) = 1.;
jacToCurv(eBoundTime, eFreeTime) = 1.;
// Directional and momentum parameters for curvilinear
jacToCurv(2, 4) = -sinPhi * invSinTheta;
jacToCurv(2, 5) = cosPhi * invSinTheta;
jacToCurv(3, 4) = cosPhi * cosTheta;
jacToCurv(3, 5) = sinPhi * cosTheta;
jacToCurv(3, 6) = -sinTheta;
jacToCurv(4, 7) = 1.;
jacToCurv.block<2, 3>(eBoundPhi, eFreeDir0) =
freeToSphericalDirectionJacobian(direction);
andiwand marked this conversation as resolved.
Show resolved Hide resolved
jacToCurv(eBoundQOverP, eFreeQOverP) = 1.;

return jacToCurv;
}
Expand Down Expand Up @@ -236,28 +234,17 @@ void reinitializeJacobians(FreeMatrix& freeTransportJacobian,
freeToPathDerivatives = FreeVector::Zero();
boundToFreeJacobian = BoundToFreeMatrix::Zero();

// Optimized trigonometry on the propagation direction
const double x = direction(0); // == cos(phi) * sin(theta)
const double y = direction(1); // == sin(phi) * sin(theta)
const double z = direction(2); // == cos(theta)
// can be turned into cosine/sine
const double cosTheta = z;
const double sinTheta = std::hypot(x, y);
const double invSinTheta = 1. / sinTheta;
const double cosPhi = x * invSinTheta;
const double sinPhi = y * invSinTheta;
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);

boundToFreeJacobian(eFreePos0, eBoundLoc0) = -sinPhi;
boundToFreeJacobian(eFreePos0, eBoundLoc1) = -cosPhi * cosTheta;
boundToFreeJacobian(eFreePos1, eBoundLoc0) = cosPhi;
boundToFreeJacobian(eFreePos1, eBoundLoc1) = -sinPhi * cosTheta;
boundToFreeJacobian(eFreePos2, eBoundLoc1) = sinTheta;
boundToFreeJacobian(eFreeTime, eBoundTime) = 1;
boundToFreeJacobian(eFreeDir0, eBoundPhi) = -sinTheta * sinPhi;
boundToFreeJacobian(eFreeDir0, eBoundTheta) = cosTheta * cosPhi;
boundToFreeJacobian(eFreeDir1, eBoundPhi) = sinTheta * cosPhi;
boundToFreeJacobian(eFreeDir1, eBoundTheta) = cosTheta * sinPhi;
boundToFreeJacobian(eFreeDir2, eBoundTheta) = -sinTheta;
boundToFreeJacobian.block<3, 2>(eFreeDir0, eBoundPhi) =
sphericalToFreeDirectionJacobian(direction);
boundToFreeJacobian(eFreeQOverP, eBoundQOverP) = 1;
}
} // namespace
Expand Down
10 changes: 6 additions & 4 deletions Core/src/Propagator/detail/JacobianEngine.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,9 @@ namespace Acts {
namespace detail {

FreeToBoundMatrix freeToCurvilinearJacobian(const Vector3& direction) {
auto [cosPhi, sinPhi, cosTheta, sinTheta, invSinTheta] =
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);
ActsScalar invSinTheta = 1. / sinTheta;
// Prepare the jacobian to curvilinear
FreeToBoundMatrix freeToCurvJacobian = FreeToBoundMatrix::Zero();
if (std::abs(cosTheta) < s_curvilinearProjTolerance) {
Expand Down Expand Up @@ -61,7 +62,7 @@ FreeToBoundMatrix freeToCurvilinearJacobian(const Vector3& direction) {
}

BoundToFreeMatrix curvilinearToFreeJacobian(const Vector3& direction) {
auto [cosPhi, sinPhi, cosTheta, sinTheta, invSinTheta] =
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);

// Prepare the jacobian to free
Expand All @@ -88,7 +89,7 @@ BoundToFreeMatrix curvilinearToFreeJacobian(const Vector3& direction) {
ActsMatrix<8, 7> anglesToDirectionJacobian(const Vector3& direction) {
ActsMatrix<8, 7> jacobian = ActsMatrix<8, 7>::Zero();

auto [cosPhi, sinPhi, cosTheta, sinTheta, invSinTheta] =
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);

jacobian(0, 0) = 1.;
Expand All @@ -108,8 +109,9 @@ ActsMatrix<8, 7> anglesToDirectionJacobian(const Vector3& direction) {
ActsMatrix<7, 8> directionToAnglesJacobian(const Vector3& direction) {
ActsMatrix<7, 8> jacobian = ActsMatrix<7, 8>::Zero();

auto [cosPhi, sinPhi, cosTheta, sinTheta, invSinTheta] =
auto [cosPhi, sinPhi, cosTheta, sinTheta] =
VectorHelpers::evaluateTrigonomics(direction);
ActsScalar invSinTheta = 1. / sinTheta;

jacobian(0, 0) = 1.;
jacobian(1, 1) = 1.;
Expand Down
44 changes: 12 additions & 32 deletions Core/src/Surfaces/DiscSurface.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
#include "Acts/Surfaces/detail/PlanarHelper.hpp"
#include "Acts/Utilities/Helpers.hpp"
#include "Acts/Utilities/Intersection.hpp"
#include "Acts/Utilities/JacobianHelpers.hpp"
#include "Acts/Utilities/ThrowAssert.hpp"

#include <algorithm>
Expand Down Expand Up @@ -218,34 +219,26 @@ Acts::BoundToFreeMatrix Acts::DiscSurface::boundToFreeJacobian(
const Vector3 position = freeParams.segment<3>(eFreePos0);
// The direction
const Vector3 direction = freeParams.segment<3>(eFreeDir0);
// Get the sines and cosines directly
const double cos_theta = std::cos(boundParams[eBoundTheta]);
const double sin_theta = std::sin(boundParams[eBoundTheta]);
const double cos_phi = std::cos(boundParams[eBoundPhi]);
const double sin_phi = std::sin(boundParams[eBoundPhi]);
// special polar coordinates for the Disc
double lrad = boundParams[eBoundLoc0];
double lphi = boundParams[eBoundLoc1];
double lcos_phi = cos(lphi);
double lsin_phi = sin(lphi);
double lcphi = std::cos(lphi);
double lsphi = std::sin(lphi);
// retrieve the reference frame
const auto rframe = referenceFrame(gctx, position, direction);
// Initialize the jacobian from local to global
BoundToFreeMatrix jacToGlobal = BoundToFreeMatrix::Zero();
// the local error components - rotated from reference frame
jacToGlobal.block<3, 1>(eFreePos0, eBoundLoc0) =
lcos_phi * rframe.block<3, 1>(0, 0) + lsin_phi * rframe.block<3, 1>(0, 1);
lcphi * rframe.block<3, 1>(0, 0) + lsphi * rframe.block<3, 1>(0, 1);
jacToGlobal.block<3, 1>(eFreePos0, eBoundLoc1) =
lrad * (lcos_phi * rframe.block<3, 1>(0, 1) -
lsin_phi * rframe.block<3, 1>(0, 0));
lrad *
(lcphi * rframe.block<3, 1>(0, 1) - lsphi * rframe.block<3, 1>(0, 0));
// the time component
jacToGlobal(eFreeTime, eBoundTime) = 1;
// the momentum components
jacToGlobal(eFreeDir0, eBoundPhi) = (-sin_theta) * sin_phi;
jacToGlobal(eFreeDir0, eBoundTheta) = cos_theta * cos_phi;
jacToGlobal(eFreeDir1, eBoundPhi) = sin_theta * cos_phi;
jacToGlobal(eFreeDir1, eBoundTheta) = cos_theta * sin_phi;
jacToGlobal(eFreeDir2, eBoundTheta) = (-sin_theta);
jacToGlobal.block<3, 2>(eFreeDir0, eBoundPhi) =
sphericalToFreeDirectionJacobian(direction);
andiwand marked this conversation as resolved.
Show resolved Hide resolved
jacToGlobal(eFreeQOverP, eBoundQOverP) = 1;
return jacToGlobal;
}
Expand All @@ -258,25 +251,15 @@ Acts::FreeToBoundMatrix Acts::DiscSurface::freeToBoundJacobian(
const auto position = parameters.segment<3>(eFreePos0);
// The direction
const auto direction = parameters.segment<3>(eFreeDir0);
// Optimized trigonometry on the propagation direction
const double x = direction(0); // == cos(phi) * sin(theta)
const double y = direction(1); // == sin(phi) * sin(theta)
const double z = direction(2); // == cos(theta)
// can be turned into cosine/sine
const double cosTheta = z;
const double sinTheta = std::hypot(x, y);
const double invSinTheta = 1. / sinTheta;
const double cosPhi = x * invSinTheta;
const double sinPhi = y * invSinTheta;
// The measurement frame of the surface
RotationMatrix3 rframeT =
referenceFrame(gctx, position, direction).transpose();
// calculate the transformation to local coordinates
const Vector3 pos_loc = transform(gctx).inverse() * position;
const double lr = perp(pos_loc);
const double lphi = phi(pos_loc);
const double lcphi = cos(lphi);
const double lsphi = sin(lphi);
const double lcphi = std::cos(lphi);
const double lsphi = std::sin(lphi);
// rotate into the polar coorindates
auto lx = rframeT.block<1, 3>(0, 0);
auto ly = rframeT.block<1, 3>(1, 0);
Expand All @@ -289,11 +272,8 @@ Acts::FreeToBoundMatrix Acts::DiscSurface::freeToBoundJacobian(
// Time element
jacToLocal(eBoundTime, eFreeTime) = 1;
// Directional and momentum elements for reference frame surface
jacToLocal(eBoundPhi, eFreeDir0) = -sinPhi * invSinTheta;
jacToLocal(eBoundPhi, eFreeDir1) = cosPhi * invSinTheta;
jacToLocal(eBoundTheta, eFreeDir0) = cosPhi * cosTheta;
jacToLocal(eBoundTheta, eFreeDir1) = sinPhi * cosTheta;
jacToLocal(eBoundTheta, eFreeDir2) = -sinTheta;
jacToLocal.block<2, 3>(eBoundPhi, eFreeDir0) =
freeToSphericalDirectionJacobian(direction);
jacToLocal(eBoundQOverP, eFreeQOverP) = 1;
return jacToLocal;
}
Expand Down
13 changes: 3 additions & 10 deletions Core/src/Surfaces/LineSurface.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
#include "Acts/Surfaces/detail/AlignmentHelper.hpp"
#include "Acts/Utilities/Helpers.hpp"
#include "Acts/Utilities/Intersection.hpp"
#include "Acts/Utilities/JacobianHelpers.hpp"
#include "Acts/Utilities/ThrowAssert.hpp"

#include <algorithm>
Expand Down Expand Up @@ -204,11 +205,6 @@ Acts::BoundToFreeMatrix Acts::LineSurface::boundToFreeJacobian(
Vector3 position = freeParams.segment<3>(eFreePos0);
// The direction
Vector3 direction = freeParams.segment<3>(eFreeDir0);
// Get the sines and cosines directly
double cosTheta = std::cos(boundParams[eBoundTheta]);
double sinTheta = std::sin(boundParams[eBoundTheta]);
double cosPhi = std::cos(boundParams[eBoundPhi]);
double sinPhi = std::sin(boundParams[eBoundPhi]);
andiwand marked this conversation as resolved.
Show resolved Hide resolved
// retrieve the reference frame
auto rframe = referenceFrame(gctx, position, direction);

Expand All @@ -220,11 +216,8 @@ Acts::BoundToFreeMatrix Acts::LineSurface::boundToFreeJacobian(
// the time component
jacToGlobal(eFreeTime, eBoundTime) = 1;
// the momentum components
jacToGlobal(eFreeDir0, eBoundPhi) = -sinTheta * sinPhi;
jacToGlobal(eFreeDir0, eBoundTheta) = cosTheta * cosPhi;
jacToGlobal(eFreeDir1, eBoundPhi) = sinTheta * cosPhi;
jacToGlobal(eFreeDir1, eBoundTheta) = cosTheta * sinPhi;
jacToGlobal(eFreeDir2, eBoundTheta) = -sinTheta;
jacToGlobal.block<3, 2>(eFreeDir0, eBoundPhi) =
sphericalToFreeDirectionJacobian(direction);
jacToGlobal(eFreeQOverP, eBoundQOverP) = 1;

// For the derivative of global position with bound angles, refer the
Expand Down
Loading
Loading