Skip to content

adobe-research/gen2res

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Restoration by Generation with Constrained Priors


CVPR 2024 (Highlight)

Zheng Ding, Xuaner Zhang, Zhuowen Tu Zhihao Xia

Paper / arXiv / Project Page

teaser

Environment Setup

conda create -n gen2res python=3.8
conda activate gen2res
conda install pytorch=1.11 cudatoolkit=11.3 torchvision -c pytorch
conda install dlib mpi4py scikit-learn scikit-image -c conda-forge
pip install blobfile==2.0.2 tqdm

Personal Restoration - Finetuning

For finetuning, please prepare a personal dataset contains several images first (we use around 20 images). Put all images into a folder and then align them by running:

python scripts/align.py -i PATH_TO_PERSONAL_PHOTO_ALBUM -o personal_images_aligned -s 256

Then we can run the following command to finetune the model. Please download the pretrained diffusion model trained on FFHQ from here. Feel free to try other pretrained diffusion models.

python scripts/finetune.py 
        --resume_checkpoint model.pt \
        --batch_size 4 \
        --lr 1e-5 \
        --lr_anneal_steps 5000 \
        --log_dir log_personal \
        --data_dir personal_images_aligned

Personal Restoration - Inference

Before we restore the low-quality images, we also need to restore the blind restoration

After we have the personalized model, we can run the following command to restore the image.

python scripts/ref_sample_single.py \
            --noise_step 200 \
            --data_dir PATH_TO_INPUT_IMAGES \
            --outputdir restored_images \
            --model_path PATH_TO_FINETUNED_MODEL \

Citation

If you find this work helpful, please consider citing using the following BibTeX entry.

@inproceedings{ding2024restoration,
  title={Restoration by Generation with Constrained Priors},
  author={Ding, Zheng and Zhang, Xuaner and Tu, Zhuowen and Xia, Zhihao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2024}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages