-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
2,288 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# Jupyter notebook checkpoints | ||
.ipynb_checkpoints/ | ||
|
||
__pycache__/ | ||
|
||
# implementation / test file | ||
impl.py | ||
|
||
# Large data file | ||
data/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,41 @@ | ||
# knn-what-how-why | ||
What is knn? How is knn done? Why is knn needed? | ||
|
||
## KNN-What | ||
|
||
KNN stands for K Nearest Neighbour. It is probably one the most basic classificaiton algorithm (although it can be used in regression). This algorithm is generally parameterized using different hyperparameter like value of K, distance function, algorithm used to calculate neigherst neighbour etc. However this project illustrates the most basic selection of these parameters. | ||
|
||
> The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance to the new point, and predict the label from these. | ||
## KNN-How | ||
|
||
The algorithm consists of the following stages | ||
- Calculate distance between a point and every other point | ||
- Sort the distances | ||
- Filter the distance based on the value of K | ||
- Majority vote the filtered distance | ||
|
||
Checkout the demo for the algorithm % *demo-link-goes-here* % | ||
|
||
|
||
## KNN-Why | ||
|
||
Although its not a state of the art algorithm, clever use of knn can be found in practical use case where there are less dimensions and involved and distibution of data is not taken into account. | ||
|
||
- KNN is super intuitive | ||
- It can work on linear or non-linear distributed data | ||
|
||
--- | ||
|
||
### About this project | ||
|
||
% *blog-link-goes-here* % | ||
|
||
--- | ||
### Prerequisite | ||
- Python3 | ||
- Jupyter Notebook | ||
- All the packages from requirement.txt | ||
|
||
### How to use | ||
- To check out the illustration, open `illustration/index.html` in browser (Only tested in chrome.) | ||
- To run the jupyter notebook, run jupyter and navigate to the the path where the notebook file is saved. |
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
<!DOCTYPE html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="UTF-8"> | ||
<title>KNN</title> | ||
<style type="text/css"> | ||
body { | ||
background: #fffde7; | ||
} | ||
|
||
#viz svg { | ||
background: rgba(255, 224, 130, 0.13); | ||
height: 800px; | ||
width: 800px; | ||
float: left; | ||
cursor: pointer; | ||
} | ||
|
||
#control { | ||
float: left; | ||
margin: 10px 20px; | ||
width: 300px; | ||
font-size: 14px; | ||
font-family: Verdana; | ||
} | ||
|
||
#control li { | ||
margin: 0px 0px 10px 0px; | ||
line-height: 20px; | ||
} | ||
|
||
.slider { | ||
-webkit-appearance: none; | ||
width: 100%; | ||
height: 5px; | ||
border-radius: 2.5px; | ||
background: #d3d3d3; | ||
outline: none; | ||
opacity: 0.7; | ||
-webkit-transition: .2s; | ||
transition: opacity .2s; | ||
} | ||
|
||
.slider:hover { | ||
opacity: 1; | ||
} | ||
|
||
.slider::-webkit-slider-thumb { | ||
-webkit-appearance: none; | ||
appearance: none; | ||
width: 15px; | ||
height: 15px; | ||
border-radius: 50%; | ||
background: #3f51b5; | ||
cursor: pointer; | ||
} | ||
|
||
.slider::-moz-range-thumb { | ||
width: 25px; | ||
height: 25px; | ||
border-radius: 50%; | ||
background: #4CAF50; | ||
cursor: pointer; | ||
} | ||
|
||
.data-point { | ||
fill: black; | ||
stroke: none; | ||
fill-opacity: 0.4; | ||
} | ||
|
||
line { | ||
fill: none; | ||
stroke: #9b9b9b; | ||
stroke-width: 6px; | ||
stroke-dasharray: 8; | ||
} | ||
|
||
#info { | ||
max-width: 600px; | ||
display: flex; | ||
padding: 5px 5px; | ||
flex-direction: row; | ||
flex-wrap: wrap; | ||
} | ||
|
||
.block { | ||
height: 50px; | ||
width: 50px; | ||
padding: 10px; | ||
margin: 4px 8px; | ||
background: #cacaca; | ||
text-align: center; | ||
vertical-align: middle; | ||
line-height: 50px; | ||
font-family: monospace; | ||
font-size: 18px; | ||
opacity: 0.85; | ||
color: #000000; | ||
} | ||
|
||
#k-val-pane { | ||
font-family: monospace; | ||
font-size: 16px; | ||
} | ||
|
||
.warning-msg { | ||
font-family: Verdana; | ||
font-size: 10px; | ||
line-height: 15px; | ||
margin-top: 10px; | ||
background: rgba(255, 152, 0, 0.25); | ||
padding: 5px 10px; | ||
} | ||
|
||
.process-msg { | ||
font-family: Verdana; | ||
font-size: 11px; | ||
line-height: 20px; | ||
margin-top: 10px; | ||
background: #B3E5FC; | ||
padding: 5px 10px; | ||
} | ||
|
||
.voting-msg { | ||
font-family: monospace; | ||
font-size: 14px; | ||
line-height: 20px; | ||
margin-top: 10px; | ||
background: #7986CB; | ||
padding: 5px 10px; | ||
color: white; | ||
} | ||
|
||
.i-focus-ns { | ||
opacity: 1 !important; | ||
} | ||
|
||
.i-focus-ws { | ||
fill-opacity: 0.8 !important; | ||
} | ||
|
||
.process-pending { | ||
opacity: 0.15; | ||
} | ||
|
||
.process-completed { | ||
opacity: 0.35; | ||
} | ||
|
||
.process-current { | ||
cursor: pointer; | ||
} | ||
|
||
.process-current .ulable:hover { | ||
text-decoration: underline; | ||
} | ||
|
||
.process-current .p-state, .process-pending .p-state { | ||
display: none; | ||
} | ||
|
||
#control i { | ||
font-size: 12px; | ||
} | ||
</style> | ||
</head> | ||
<body> | ||
<div id="viz"> | ||
<svg id="svg" version="1.1" xmlns="http://www.w3.org/2000/svg"></svg> | ||
</div> | ||
<div id="control"> | ||
The algorithm consists of 4 steps. | ||
<ol> | ||
<li class='process-current' id="action-calcdist"> | ||
<span class="ulable"><b>Calculate distance</b> from the test point to every other point.</span> | ||
<span class="p-state"> [Done]</span> | ||
<i>Click on the canvas on left to add a point and start the algorithm</i> | ||
</li> | ||
<li class="process-pending" data="sort" id="action-sort"> | ||
<span class="ulable"><b>Sort</b> all the distances in ascending order</span> | ||
<span class="p-state"> [Done]</span> | ||
<i>Click here to start</i> | ||
</li> | ||
<li class="process-pending" id="action-filterAndVote"> | ||
<span class="ulable"><b>Filter</b> & <b>Vote</b> the distances based on k values</span> | ||
<span class="p-state"> [Done]</span> | ||
<input type="range" min="0" max="10" value="3" class="slider" id="k-val" data="filterAndVote" style="margin-top: 15px;"> | ||
<p class="warning-msg"> | ||
Click on the slider to start. In this case, the algorithm will start with default value. Alternatively you can drag the slider. <b>Current K value is:</b><span id="k-val-pane">3</span> | ||
</p> | ||
|
||
<p class="voting-msg" id="voting-res"> | ||
Voting result will be declared here. | ||
</p> | ||
</li> | ||
</ol> | ||
<div class="slider-con"> | ||
</div> | ||
</div> | ||
<div id="info"> | ||
|
||
</div> | ||
|
||
<script type="text/javascript" src="./data/data.js"></script> | ||
<script type="text/javascript" src="./d3.min.js"></script> | ||
<script type="text/javascript" src="./d3-scale-chromatic.min.js"></script> | ||
<script type="text/javascript" src="./main.js"></script> | ||
</body> | ||
</html> |
Oops, something went wrong.