-
-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
58b57c2
commit 93c83e4
Showing
4 changed files
with
180 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import aesara.tensor as at | ||
from aesara.graph.rewriting.basic import node_rewriter | ||
from aesara.tensor.random.basic import NormalRV, normal | ||
|
||
from aeppl.rewriting import measurable_ir_rewrites_db | ||
|
||
|
||
@node_rewriter((at.sub, at.add)) | ||
def add_independent_normals(fgraph, node): | ||
"""Replace a sum of two un-valued independent normal RVs with a single normal RV.""" | ||
|
||
if node.op == at.add: | ||
sub = False | ||
else: | ||
sub = True | ||
|
||
X_rv, Y_rv = node.inputs | ||
|
||
if not (X_rv.owner and Y_rv.owner) or not ( | ||
# This also checks that the RVs are un-valued (i.e. they're not | ||
# `ValuedVariable`s) | ||
isinstance(X_rv.owner.op, NormalRV) | ||
and isinstance(Y_rv.owner.op, NormalRV) | ||
): | ||
return None | ||
|
||
old_rv = node.outputs[0] | ||
|
||
mu_x, sigma_x, mu_y, sigma_y, _ = at.broadcast_arrays( | ||
*(X_rv.owner.inputs[-2:] + Y_rv.owner.inputs[-2:] + [old_rv]) | ||
) | ||
|
||
new_rng = X_rv.owner.inputs[0].clone() | ||
|
||
new_node = normal.make_node( | ||
new_rng, | ||
old_rv.shape, | ||
old_rv.dtype, | ||
mu_x + mu_y if not sub else mu_x - mu_y, | ||
at.sqrt(sigma_x**2 + sigma_y**2), | ||
) | ||
|
||
fgraph.add_input(new_rng) | ||
|
||
# new_rng must be updated with values of the RNGs output by `new_node | ||
new_rng.default_update = new_node.outputs[0] | ||
new_normal_rv = new_node.default_output() | ||
|
||
if old_rv.name: | ||
new_normal_rv.name = old_rv.name | ||
|
||
return [new_normal_rv] | ||
|
||
|
||
measurable_ir_rewrites_db.register( | ||
"add_independent_normals", | ||
add_independent_normals, | ||
"basic", | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
import aesara.tensor as at | ||
import numpy as np | ||
import pytest | ||
from aesara.tensor.random.basic import NormalRV | ||
|
||
from aeppl.rewriting import construct_ir_fgraph | ||
from aeppl.transforms import MeasurableElemwiseTransform | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"mu_x, mu_y, sigma_x, sigma_y, x_shape, y_shape", | ||
[ | ||
( | ||
np.array([1, 10, 100]), | ||
np.array(2), | ||
np.array(0.03), | ||
np.tile(0.04, 3), | ||
(), | ||
(), | ||
), | ||
( | ||
np.array([1, 10, 100]), | ||
np.array(2), | ||
np.array(0.03), | ||
np.full((5, 1), 0.04), | ||
(), | ||
(5, 3), | ||
), | ||
( | ||
np.array([[1, 10, 100]]), | ||
np.array([[0.2], [2], [20], [200], [2000]]), | ||
np.array(0.03), | ||
np.array(0.04), | ||
(), | ||
(), | ||
), | ||
( | ||
np.broadcast_to(np.array([1, 10, 100]), (5, 3)), | ||
np.array([2, 20, 200]), | ||
np.array(0.03), | ||
np.array(0.04), | ||
(2, 5, 3), | ||
(), | ||
), | ||
( | ||
np.array([[1, 10, 100]]), | ||
np.array([[0.2], [2], [20], [200], [2000]]), | ||
np.array([[0.5], [5], [50], [500], [5000]]), | ||
np.array([[0.4, 4, 40]]), | ||
(2, 5, 3), | ||
(), | ||
), | ||
( | ||
np.array(1), | ||
np.array(2), | ||
np.array(3), | ||
np.array(4), | ||
(5, 1), | ||
(1,), | ||
), | ||
], | ||
) | ||
@pytest.mark.parametrize("sub", [False, True]) | ||
def test_add_independent_normals(mu_x, mu_y, sigma_x, sigma_y, x_shape, y_shape, sub): | ||
srng = at.random.RandomStream(29833) | ||
|
||
X_rv = srng.normal(mu_x, sigma_x, size=x_shape) | ||
X_rv.name = "X" | ||
|
||
Y_rv = srng.normal(mu_y, sigma_y, size=y_shape) | ||
Y_rv.name = "Y" | ||
|
||
Z_rv = X_rv + Y_rv if not sub else X_rv - Y_rv | ||
Z_rv.name = "Z" | ||
z_vv = Z_rv.clone() | ||
|
||
fgraph, _, _ = construct_ir_fgraph({Z_rv: z_vv}) | ||
|
||
(valued_var_out_node) = fgraph.outputs[0].owner | ||
# The convolution should be applied, and not the transform | ||
assert isinstance(valued_var_out_node.inputs[0].owner.op, NormalRV) | ||
|
||
new_rv = fgraph.outputs[0].owner.inputs[0] | ||
|
||
new_rv_mu = mu_x + mu_y if not sub else mu_x - mu_y | ||
new_rv_sigma = np.sqrt(sigma_x**2 + sigma_y**2) | ||
|
||
new_rv_shape = np.broadcast_shapes( | ||
new_rv_mu.shape, new_rv_sigma.shape, x_shape, y_shape | ||
) | ||
|
||
new_rv_mu = np.broadcast_to(new_rv_mu, new_rv_shape) | ||
new_rv_sigma = np.broadcast_to(new_rv_sigma, new_rv_shape) | ||
|
||
assert isinstance(new_rv.owner.op, NormalRV) | ||
assert np.allclose(new_rv.owner.inputs[3].eval(), new_rv_mu) | ||
assert np.allclose(new_rv.owner.inputs[4].eval(), new_rv_sigma) | ||
assert new_rv.name == "Z" | ||
|
||
|
||
def test_normal_add_input_valued(): | ||
"""Test the case when one of the normal inputs to the add `Op` is a `ValuedVariable`.""" | ||
srng = at.random.RandomStream(0) | ||
|
||
X_rv = srng.normal(1.0, name="X") | ||
x_vv = X_rv.clone() | ||
Y_rv = srng.normal(1.0, name="Y") | ||
Z_rv = X_rv + Y_rv | ||
Z_rv.name = "Z" | ||
z_vv = Z_rv.clone() | ||
|
||
fgraph, _, _ = construct_ir_fgraph({Z_rv: z_vv, X_rv: x_vv}) | ||
|
||
valued_var_out_node = fgraph.outputs[0].owner | ||
# We should not expect the convolution to be applied; instead, the | ||
# transform should be (for now) | ||
assert isinstance( | ||
valued_var_out_node.inputs[0].owner.op, MeasurableElemwiseTransform | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters