Skip to content

Commit

Permalink
Fix compilation with agda/agda#7581
Browse files Browse the repository at this point in the history
  • Loading branch information
UlfNorell committed Nov 13, 2024
1 parent 5449cc2 commit 3694581
Show file tree
Hide file tree
Showing 8 changed files with 16 additions and 17 deletions.
2 changes: 1 addition & 1 deletion Cubical/Categories/Constructions/Slice/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ open SliceHom public
-- can probably replace these by showing that SliceOb is isomorphic to Sigma and
-- that paths are isomorphic to Sigma? But sounds like that would need a lot of transp

SliceOb-≑-intro : βˆ€ {a b} {f g}
SliceOb-≑-intro : βˆ€ {a b} {f : C [ a , c ]} {g : C [ b , c ]}
β†’ (p : a ≑ b)
β†’ PathP (Ξ» i β†’ C [ p i , c ]) f g
β†’ sliceob {a} f ≑ sliceob {b} g
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Categories/DistLatticeSheaf/ComparisonLemma.agda
Original file line number Diff line number Diff line change
Expand Up @@ -399,7 +399,7 @@ module _ (L : DistLattice β„“) (C : Category β„“' β„“'') (limitC : Limits {β„“}
(NatTransCone _ _ _ F (idTrans _) x)
β‹†βŸ¨ C ⟩ limOfArrows (FLimCone (Ξ± ∘ˑ i) _) (GLimCone (Ξ± ∘ˑ i) _)
(↓nt (Ξ± ∘ˑ i) x)
goal x = sym (limArrowUnique _ _ _ _ (isConeMorComp x))
goal x = sym (limArrowUnique {C = C} _ _ _ _ (isConeMorComp x))
βˆ™ limArrowCompLimOfArrows _ _ _ _ _

nIso (Ξ· winv) (F , isSheafF) = isIsoΞ£PropCat _ _ _
Expand Down
5 changes: 2 additions & 3 deletions Cubical/Categories/Instances/CommAlgebras.agda
Original file line number Diff line number Diff line change
Expand Up @@ -675,10 +675,9 @@ module PreSheafFromUniversalProp (C : Category β„“ β„“') (P : ob C β†’ Type β„“)
assocDiagPath : Forgetful ∘F (universalPShf ∘F D) ≑ 𝓖 ∘F D
assocDiagPath = F-assoc

conePathPCR : PathP (Ξ» i β†’ Cone (assocDiagPath i) (F-ob (Forgetful ∘F universalPShf) c))
conePathPCR : PathP (Ξ» i β†’ Cone (assocDiagPath i) (F-ob 𝓖 c))
(F-cone Forgetful (F-cone universalPShf cc)) (F-cone 𝓖 cc)
conePathPCR = conePathPDiag -- why does everything have to be explicit?
(Ξ» v _ β†’ (Forgetful ∘F universalPShf) .F-hom {x = c} {y = D .F-ob v} (cc .coneOut v))
conePathPCR = conePathPDiag (Ξ» v _ β†’ 𝓖 .F-hom (cc .coneOut v))


toLimCone : isLimCone _ _ (F-cone 𝓖 cc)
Expand Down
14 changes: 7 additions & 7 deletions Cubical/Categories/Limits/RightKan.agda
Original file line number Diff line number Diff line change
Expand Up @@ -106,9 +106,9 @@ module _ {β„“C β„“C' β„“M β„“M' β„“A β„“A' : Level}
path v = (F-hom Ran f) β‹†βŸ¨ A ⟩ (F-hom Ran g) β‹†βŸ¨ A ⟩ (limOut (limitA (z ↓Diag) (T* z)) v)
β‰‘βŸ¨ ⋆Assoc A _ _ _ ⟩
(F-hom Ran f) β‹†βŸ¨ A ⟩ ((F-hom Ran g) β‹†βŸ¨ A ⟩ (limOut (limitA (z ↓Diag) (T* z)) v))
β‰‘βŸ¨ cong (seq' A (F-hom Ran f)) (limArrowCommutes _ _ _ _) ⟩
β‰‘βŸ¨ cong (seq' A (F-hom Ran f)) (limArrowCommutes (limitA _ _) _ _ _) ⟩
(F-hom Ran f) β‹†βŸ¨ A ⟩ limOut (limitA (y ↓Diag) (T* y)) (j g .F-ob v)
β‰‘βŸ¨ limArrowCommutes _ _ _ _ ⟩
β‰‘βŸ¨ limArrowCommutes (limitA _ _) _ _ _ ⟩
limOut (limitA (x ↓Diag) (T* x)) (j f .F-ob (j g .F-ob v))
β‰‘βŸ¨ RanConeTrans f g v ⟩
coneOut (RanCone (f β‹†βŸ¨ C ⟩ g)) v ∎
Expand All @@ -121,7 +121,7 @@ module _ {β„“C β„“C' β„“M β„“M' β„“A β„“A' : Level}
Ran .F-hom (K .F-hom f) β‹†βŸ¨ A ⟩ coneOut (RanCone (id C)) (v , id C)
β‰‘βŸ¨ cong (Ξ» g β†’ Ran .F-hom (K .F-hom f) β‹†βŸ¨ A ⟩ g) (sym (RanConeRefl (v , id C))) ⟩
Ran .F-hom (K .F-hom f) β‹†βŸ¨ A ⟩ limOut (limitA ((K .F-ob v) ↓Diag) (T* (K .F-ob v))) (v , id C)
β‰‘βŸ¨ limArrowCommutes _ _ _ _ ⟩
β‰‘βŸ¨ limArrowCommutes (limitA _ _) _ _ _ ⟩
coneOut (RanCone (K .F-hom f)) (v , id C)
β‰‘βŸ¨ cong (Ξ» g β†’ limOut (limitA ((K .F-ob u) ↓Diag) (T* (K .F-ob u))) (v , g))
(⋆IdR C (K .F-hom f) βˆ™ sym (⋆IdL C (K .F-hom f))) ⟩
Expand Down Expand Up @@ -169,15 +169,15 @@ module _ {β„“C β„“C' β„“M β„“M' β„“A β„“A' : Level}
(S .F-hom f β‹†βŸ¨ A ⟩ N-ob Οƒ y) β‹†βŸ¨ A ⟩ limOut (limitA (y ↓Diag) (T* y)) (u , g)
β‰‘βŸ¨ ⋆Assoc A _ _ _ ⟩
S .F-hom f β‹†βŸ¨ A ⟩ (N-ob Οƒ y β‹†βŸ¨ A ⟩ limOut (limitA (y ↓Diag) (T* y)) (u , g))
β‰‘βŸ¨ cong (seq' A (S .F-hom f)) (limArrowCommutes _ _ _ _) ⟩
β‰‘βŸ¨ cong (seq' A (S .F-hom f)) (limArrowCommutes (limitA _ _) _ _ _) ⟩
S .F-hom f β‹†βŸ¨ A ⟩ (S .F-hom g β‹†βŸ¨ A ⟩ Ξ± .N-ob u)
β‰‘βŸ¨ sym (⋆Assoc A _ _ _) ⟩
(S .F-hom f β‹†βŸ¨ A ⟩ S .F-hom g) β‹†βŸ¨ A ⟩ Ξ± .N-ob u
β‰‘βŸ¨ cong (Ξ» h β†’ h β‹†βŸ¨ A ⟩ Ξ± .N-ob u) (sym (S .F-seq _ _)) ⟩
S .F-hom (f β‹†βŸ¨ C ⟩ g) β‹†βŸ¨ A ⟩ Ξ± .N-ob u
β‰‘βŸ¨ sym (limArrowCommutes _ _ _ _) ⟩
β‰‘βŸ¨ sym (limArrowCommutes (limitA _ _) _ _ _) ⟩
N-ob Οƒ x β‹†βŸ¨ A ⟩ limOut (limitA (x ↓Diag) (T* x)) (u , f β‹†βŸ¨ C ⟩ g)
β‰‘βŸ¨ cong (seq' A (N-ob Οƒ x)) (sym (limArrowCommutes _ _ _ _)) ⟩
β‰‘βŸ¨ cong (seq' A (N-ob Οƒ x)) (sym (limArrowCommutes (limitA _ _) _ _ _)) ⟩
N-ob Οƒ x β‹†βŸ¨ A ⟩ (Ran .F-hom f β‹†βŸ¨ A ⟩ limOut (limitA (y ↓Diag) (T* y)) (u , g))
β‰‘βŸ¨ sym (⋆Assoc A _ _ _) ⟩
(N-ob Οƒ x β‹†βŸ¨ A ⟩ Ran .F-hom f) β‹†βŸ¨ A ⟩ limOut (limitA (y ↓Diag) (T* y)) (u , g) ∎
Expand All @@ -200,7 +200,7 @@ module _ {β„“C β„“C' β„“M β„“M' β„“A β„“A' : Level}
S .F-hom (id C β‹†βŸ¨ C ⟩ id C) β‹†βŸ¨ A ⟩ Ξ± .N-ob u
β‰‘βŸ¨ refl ⟩
NatTransCone S Ξ± (F-ob K u) .coneOut (u , id C β‹†βŸ¨ C ⟩ id C)
β‰‘βŸ¨ sym (limArrowCommutes _ _ _ _) ⟩
β‰‘βŸ¨ sym (limArrowCommutes (limitA _ _) _ _ _) ⟩
limArrow (limitA ((K .F-ob u) ↓Diag) (T* (K .F-ob u))) _ (NatTransCone S Ξ± (F-ob K u))
β‹†βŸ¨ A ⟩ limOut (limitA ((K .F-ob u) ↓Diag) (T* (K .F-ob u))) (u , id C β‹†βŸ¨ C ⟩ id C) ∎

Expand Down
4 changes: 2 additions & 2 deletions Cubical/Categories/Presheaf/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -329,7 +329,7 @@ module _ {β„“S : Level} (C : Category β„“ β„“') (F : Functor (C ^op) (SET β„“S))
refl≑comm : PathP (Ξ» i β†’ (F βŸͺ f ⟫) (eq i) ≑ (eq' i)) refl comm
refl≑comm = isOfHLevelβ†’isOfHLevelDep 1 (Ξ» (v , w) β†’ snd (F βŸ… d βŸ†) ((F βŸͺ f ⟫) w) v) refl comm Ξ» i β†’ (eq' i , eq i)

X'≑subst : PathP (Ξ» i β†’ fst (P βŸ… c , eq i βŸ†)) X' (subst _ eq X')
X'≑subst : PathP (Ξ» i β†’ fst (P βŸ… c , eq i βŸ†)) X' (subst (Ξ» v β†’ fst (P βŸ… c , v βŸ†)) eq X')
X'≑subst = transport-filler (Ξ» i β†’ fst (P βŸ… c , eq i βŸ†)) X'

-- bottom left of the commuting diagram
Expand All @@ -355,7 +355,7 @@ module _ {β„“S : Level} (C : Category β„“ β„“') (F : Functor (C ^op) (SET β„“S))
right i = (Ξ± ⟦ c , eq i ⟧) (X'≑subst i)
where
-- this is exactly the same as the one from before, can refactor?
X'≑subst : PathP (Ξ» i β†’ fst (P βŸ… c , eq i βŸ†)) X' (subst _ eq X')
X'≑subst : PathP (Ξ» i β†’ fst (P βŸ… c , eq i βŸ†)) X' (subst (Ξ» v β†’ fst (P βŸ… c , v βŸ†)) eq X')
X'≑subst = transport-filler _ _

-- extracted out type since need to use in in 'left' body as well
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Categories/RezkCompletion/Construction.agda
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ module RezkByYoneda (C : Category β„“ β„“) where
ToYonedaImage = ToEssentialImage _

isWeakEquivalenceToYonedaImage : isWeakEquivalence ToYonedaImage
isWeakEquivalenceToYonedaImage .fullfaith = isFullyFaithfulToEssentialImage _ isFullyFaithfulYO
isWeakEquivalenceToYonedaImage .fullfaith = isFullyFaithfulToEssentialImage YO isFullyFaithfulYO
isWeakEquivalenceToYonedaImage .esssurj = isEssentiallySurjToEssentialImage YO

isRezkCompletionToYonedaImage : isRezkCompletion ToYonedaImage
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Tactics/CategorySolver/Solver.agda
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ module Eval (𝓒 : Category β„“ β„“') where
solve : βˆ€ {A B} β†’ (e₁ eβ‚‚ : W𝓒 [ A , B ])
β†’ eval e₁ ≑ eval eβ‚‚
β†’ ⟦ e₁ ⟧c ≑ ⟦ eβ‚‚ ⟧c
solve {A}{B} e₁ eβ‚‚ p = cong ⟦_⟧c (isFaithfulPseudoYoneda _ _ _ _ lem) where
solve {A}{B} e₁ eβ‚‚ p = cong ⟦_⟧c (isFaithfulPseudoYoneda {C = W𝓒} _ _ _ _ lem) where
lem : π“˜ βŸͺ e₁ ⟫ ≑ π“˜ βŸͺ eβ‚‚ ⟫
lem = transport
(Ξ» i β†’ Yo-YoSem-agree (~ i) βŸͺ e₁ ⟫ ≑ Yo-YoSem-agree (~ i) βŸͺ eβ‚‚ ⟫)
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Tactics/FunctorSolver/Solver.agda
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ module Eval (𝓒 : Category β„“c β„“c') (𝓓 : Category β„“d β„“d') (𝓕 : F
β†’ (p : Path _ (YoSem.semH βŸͺ e ⟫) (YoSem.semH βŸͺ e' ⟫))
β†’ Path _ (TautoSem.semH βŸͺ e ⟫) (TautoSem.semH βŸͺ e' ⟫)
solve {A}{B} e e' p =
cong (TautoSem.semH .F-hom) (isFaithfulPseudoYoneda _ _ _ _ lem) where
cong (TautoSem.semH .F-hom) (isFaithfulPseudoYoneda {C = Free𝓓} _ _ _ _ lem) where
lem : Path _ (PsYo βŸͺ e ⟫) (PsYo βŸͺ e' ⟫)
lem = transport
(Ξ» i β†’ Path _
Expand Down

0 comments on commit 3694581

Please sign in to comment.