-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
40 changed files
with
2,540 additions
and
0 deletions.
There are no files selected for viewing
65 changes: 65 additions & 0 deletions
65
...MatProjectEFormDataset/Megnet_make_crystal_model/Megnet_MatProjectEFormDataset_score.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: eV/atom | ||
date_time: '2024-03-01 15:58:56' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 | ||
80GB PCIe''}]' | ||
epochs: | ||
- 1000 | ||
execute_folds: | ||
- 0 | ||
kgcnn_version: 4.0.1 | ||
learning_rate: | ||
- 5.549999968934571e-06 | ||
loss: | ||
- 0.004087877459824085 | ||
max_learning_rate: | ||
- 0.0005000000237487257 | ||
max_loss: | ||
- 0.24293601512908936 | ||
max_scaled_mean_absolute_error: | ||
- 0.28267571330070496 | ||
max_scaled_root_mean_squared_error: | ||
- 0.46570608019828796 | ||
max_val_loss: | ||
- 0.08681195974349976 | ||
max_val_scaled_mean_absolute_error: | ||
- 0.10100412368774414 | ||
max_val_scaled_root_mean_squared_error: | ||
- 0.18269585072994232 | ||
min_learning_rate: | ||
- 5.549999968934571e-06 | ||
min_loss: | ||
- 0.004087877459824085 | ||
min_scaled_mean_absolute_error: | ||
- 0.0047565787099301815 | ||
min_scaled_root_mean_squared_error: | ||
- 0.012960121035575867 | ||
min_val_loss: | ||
- 0.023371437564492226 | ||
min_val_scaled_mean_absolute_error: | ||
- 0.027191713452339172 | ||
min_val_scaled_root_mean_squared_error: | ||
- 0.06932297348976135 | ||
model_class: make_crystal_model | ||
model_name: Megnet | ||
model_version: '2023-12-05' | ||
multi_target_indices: null | ||
number_histories: 1 | ||
scaled_mean_absolute_error: | ||
- 0.0047565787099301815 | ||
scaled_root_mean_squared_error: | ||
- 0.012960121035575867 | ||
seed: 42 | ||
time_list: | ||
- 1 day, 23:14:50.795494 | ||
val_loss: | ||
- 0.023371437564492226 | ||
val_scaled_mean_absolute_error: | ||
- 0.027191713452339172 | ||
val_scaled_root_mean_squared_error: | ||
- 0.07003486901521683 |
1 change: 1 addition & 0 deletions
1
training/results/MatProjectEFormDataset/Megnet_make_crystal_model/Megnet_hyper.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"model": {"module_name": "kgcnn.literature.Megnet", "class_name": "make_crystal_model", "config": {"name": "Megnet", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int32", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [1], "name": "charge", "dtype": "float32", "ragged": false}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "make_distance": true, "expand_distance": true, "gauss_args": {"bins": 25, "distance": 5, "offset": 0.0, "sigma": 0.4}, "meg_block_args": {"node_embed": [64, 32, 32], "edge_embed": [64, 32, 32], "env_embed": [64, 32, 32], "activation": "kgcnn>softplus2"}, "set2set_args": {"channels": 16, "T": 3, "pooling_method": "sum", "init_qstar": "0"}, "node_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "edge_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "state_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "nblocks": 3, "has_ff": true, "dropout": null, "use_set2set": true, "verbose": 10, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true, true], "units": [32, 16, 1], "activation": ["kgcnn>softplus2", "kgcnn>softplus2", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 1000, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.0005, "learning_rate_stop": 5e-06, "epo_min": 100, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0005}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "eV/atom"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectEFormDataset", "module_name": "kgcnn.data.datasets.MatProjectEFormDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} |
157 changes: 157 additions & 0 deletions
157
...s/MatProjectEFormDataset/PAiNN_make_crystal_model/PAiNN_MatProjectEFormDataset_score.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: eV/atom | ||
date_time: '2024-03-14 11:26:33' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 | ||
80GB PCIe''}]' | ||
epochs: | ||
- 800 | ||
- 800 | ||
- 800 | ||
- 800 | ||
- 800 | ||
execute_folds: | ||
- 4 | ||
kgcnn_version: 4.0.1 | ||
learning_rate: | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
loss: | ||
- 0.0022031376138329506 | ||
- 0.002156742848455906 | ||
- 0.0021591256372630596 | ||
- 0.002236530650407076 | ||
- 0.002121950266882777 | ||
max_learning_rate: | ||
- 9.999999747378752e-05 | ||
- 9.999999747378752e-05 | ||
- 9.999999747378752e-05 | ||
- 9.999999747378752e-05 | ||
- 9.999999747378752e-05 | ||
max_loss: | ||
- 283.341552734375 | ||
- 0.21523690223693848 | ||
- 1.1116989850997925 | ||
- 16.761430740356445 | ||
- 0.4403814375400543 | ||
max_scaled_mean_absolute_error: | ||
- 329.690185546875 | ||
- 0.25008291006088257 | ||
- 1.2937359809875488 | ||
- 19.515050888061523 | ||
- 0.5118441581726074 | ||
max_scaled_root_mean_squared_error: | ||
- 107279.140625 | ||
- 5.095092296600342 | ||
- 411.5854187011719 | ||
- 6322.42333984375 | ||
- 105.53013610839844 | ||
max_val_loss: | ||
- 0.08015388250350952 | ||
- 0.08247227221727371 | ||
- 0.07635330408811569 | ||
- 0.07353736460208893 | ||
- 0.09253674000501633 | ||
max_val_scaled_mean_absolute_error: | ||
- 0.09318814426660538 | ||
- 0.09583482146263123 | ||
- 0.0888148844242096 | ||
- 0.0855850875377655 | ||
- 0.10754433274269104 | ||
max_val_scaled_root_mean_squared_error: | ||
- 0.2518233060836792 | ||
- 0.15024664998054504 | ||
- 3.1640191078186035 | ||
- 0.136776402592659 | ||
- 0.34822598099708557 | ||
min_learning_rate: | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
- 1.0128571375389583e-05 | ||
min_loss: | ||
- 0.0022031376138329506 | ||
- 0.002156742848455906 | ||
- 0.0021591256372630596 | ||
- 0.002236530650407076 | ||
- 0.0021089049987494946 | ||
min_scaled_mean_absolute_error: | ||
- 0.0025635266210883856 | ||
- 0.0025060451589524746 | ||
- 0.0025124901439994574 | ||
- 0.0026032738387584686 | ||
- 0.0024510754738003016 | ||
min_scaled_root_mean_squared_error: | ||
- 0.0061350935138762 | ||
- 0.006993255112320185 | ||
- 0.00799341220408678 | ||
- 0.00853035133332014 | ||
- 0.008364901877939701 | ||
min_val_loss: | ||
- 0.020580174401402473 | ||
- 0.021014703437685966 | ||
- 0.020457644015550613 | ||
- 0.020269570872187614 | ||
- 0.020771024748682976 | ||
min_val_scaled_mean_absolute_error: | ||
- 0.023943014442920685 | ||
- 0.02442334219813347 | ||
- 0.023796744644641876 | ||
- 0.023600205779075623 | ||
- 0.02413744293153286 | ||
min_val_scaled_root_mean_squared_error: | ||
- 0.05723186582326889 | ||
- 0.055046603083610535 | ||
- 0.05682484433054924 | ||
- 0.053158361464738846 | ||
- 0.0530422143638134 | ||
model_class: make_crystal_model | ||
model_name: PAiNN | ||
model_version: '2023-10-04' | ||
multi_target_indices: null | ||
number_histories: 5 | ||
scaled_mean_absolute_error: | ||
- 0.0025635266210883856 | ||
- 0.0025060451589524746 | ||
- 0.0025124901439994574 | ||
- 0.0026032738387584686 | ||
- 0.002464835997670889 | ||
scaled_root_mean_squared_error: | ||
- 0.0061350935138762 | ||
- 0.006993255112320185 | ||
- 0.00799341220408678 | ||
- 0.00853035133332014 | ||
- 0.008378282189369202 | ||
seed: 42 | ||
time_list: | ||
- '15:06:54.175667' | ||
- '15:23:58.313253' | ||
- '15:37:53.102961' | ||
- '16:02:28.792165' | ||
- '15:41:58.027323' | ||
val_loss: | ||
- 0.020749464631080627 | ||
- 0.021014703437685966 | ||
- 0.020489152520895004 | ||
- 0.020450659096240997 | ||
- 0.021013258025050163 | ||
val_scaled_mean_absolute_error: | ||
- 0.02413973957300186 | ||
- 0.02442334219813347 | ||
- 0.02383369207382202 | ||
- 0.02381002902984619 | ||
- 0.024419881403446198 | ||
val_scaled_root_mean_squared_error: | ||
- 0.05800706893205643 | ||
- 0.05669984221458435 | ||
- 0.05682484433054924 | ||
- 0.05372071638703346 | ||
- 0.05350622162222862 |
1 change: 1 addition & 0 deletions
1
training/results/MatProjectEFormDataset/PAiNN_make_crystal_model/PAiNN_hyper.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"model": {"module_name": "kgcnn.literature.PAiNN", "class_name": "make_crystal_model", "config": {"name": "PAiNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int32", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128}, "bessel_basis": {"num_radial": 20, "cutoff": 5.0, "envelope_exponent": 5}, "equiv_initialize_kwargs": {"dim": 3, "method": "eye"}, "pooling_args": {"pooling_method": "mean"}, "conv_args": {"units": 128, "cutoff": null, "conv_pool": "sum"}, "update_args": {"units": 128}, "depth": 3, "verbose": 10, "equiv_normalization": true, "node_normalization": false, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true], "units": [128, 1], "activation": ["swish", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 800, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.0001, "learning_rate_stop": 1e-05, "epo_min": 100, "epo": 800, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "eV/atom"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectEFormDataset", "module_name": "kgcnn.data.datasets.MatProjectEFormDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} |
139 changes: 139 additions & 0 deletions
139
training/results/QM9Dataset/DimeNetPP/DimeNetPP_QM9Dataset_score_G.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: '[''eV'']' | ||
date_time: '2024-03-15 06:23:23' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (7, 0), ''device_name'': ''Tesla V100-SXM2-32GB''}]' | ||
epochs: | ||
- 600 | ||
- 600 | ||
- 600 | ||
- 600 | ||
- 600 | ||
execute_folds: | ||
- 4 | ||
kgcnn_version: 4.0.1 | ||
loss: | ||
- 0.002868798328563571 | ||
- 0.0028493432328104973 | ||
- 0.002786037977784872 | ||
- 0.003136424347758293 | ||
- 0.0028916450683027506 | ||
max_loss: | ||
- 0.17670932412147522 | ||
- 0.17715905606746674 | ||
- 0.17726151645183563 | ||
- 0.17782989144325256 | ||
- 0.17748409509658813 | ||
max_scaled_mean_absolute_error: | ||
- 0.1939270794391632 | ||
- 0.19473996758460999 | ||
- 0.19480031728744507 | ||
- 0.19551712274551392 | ||
- 0.19523854553699493 | ||
max_scaled_root_mean_squared_error: | ||
- 0.33319583535194397 | ||
- 0.33428409695625305 | ||
- 0.3362830877304077 | ||
- 0.3380829691886902 | ||
- 0.3377641439437866 | ||
max_val_loss: | ||
- 0.029520221054553986 | ||
- 0.02837827056646347 | ||
- 0.027989225462079048 | ||
- 0.033230170607566833 | ||
- 0.030747266486287117 | ||
max_val_scaled_mean_absolute_error: | ||
- 0.03224688395857811 | ||
- 0.03109075129032135 | ||
- 0.030618516728281975 | ||
- 0.036430105566978455 | ||
- 0.03372833505272865 | ||
max_val_scaled_root_mean_squared_error: | ||
- 0.05694420635700226 | ||
- 0.05150516703724861 | ||
- 0.05387285351753235 | ||
- 0.062075868248939514 | ||
- 0.056977249681949615 | ||
min_loss: | ||
- 0.002744976431131363 | ||
- 0.0027860943228006363 | ||
- 0.002786037977784872 | ||
- 0.0029745546635240316 | ||
- 0.00281642097979784 | ||
min_scaled_mean_absolute_error: | ||
- 0.0030123277101665735 | ||
- 0.003062501084059477 | ||
- 0.003061545779928565 | ||
- 0.0032703846227377653 | ||
- 0.0030979991424828768 | ||
min_scaled_root_mean_squared_error: | ||
- 0.0041679153218865395 | ||
- 0.004196802619844675 | ||
- 0.004170420579612255 | ||
- 0.004524059593677521 | ||
- 0.004268138203769922 | ||
min_val_loss: | ||
- 0.00979491788893938 | ||
- 0.009362481534481049 | ||
- 0.009580131620168686 | ||
- 0.009070448577404022 | ||
- 0.009656858630478382 | ||
min_val_scaled_mean_absolute_error: | ||
- 0.01063892338424921 | ||
- 0.010197021067142487 | ||
- 0.010442499071359634 | ||
- 0.009880520403385162 | ||
- 0.01054394617676735 | ||
min_val_scaled_root_mean_squared_error: | ||
- 0.03518393263220787 | ||
- 0.03090721182525158 | ||
- 0.03250584751367569 | ||
- 0.03193874657154083 | ||
- 0.030954917892813683 | ||
model_class: make_model | ||
model_name: DimeNetPP | ||
model_version: '2023-12-04' | ||
multi_target_indices: | ||
- 13 | ||
number_histories: 5 | ||
scaled_mean_absolute_error: | ||
- 0.0031482786871492863 | ||
- 0.0031320941634476185 | ||
- 0.003061545779928565 | ||
- 0.0034483373165130615 | ||
- 0.003180810948833823 | ||
scaled_root_mean_squared_error: | ||
- 0.004328957758843899 | ||
- 0.004300135187804699 | ||
- 0.004170420579612255 | ||
- 0.0047387913800776005 | ||
- 0.004378628917038441 | ||
seed: 42 | ||
time_list: | ||
- 1 day, 10:52:05.406221 | ||
- 1 day, 8:18:09.581010 | ||
- 1 day, 10:18:30.398631 | ||
- 1 day, 10:47:51.329256 | ||
- 1 day, 11:13:00.770296 | ||
val_loss: | ||
- 0.01041325181722641 | ||
- 0.010219499468803406 | ||
- 0.009580131620168686 | ||
- 0.009070448577404022 | ||
- 0.010097221471369267 | ||
val_scaled_mean_absolute_error: | ||
- 0.011316145770251751 | ||
- 0.011138662695884705 | ||
- 0.010442499071359634 | ||
- 0.009880520403385162 | ||
- 0.0110316826030612 | ||
val_scaled_root_mean_squared_error: | ||
- 0.03608761727809906 | ||
- 0.03144918009638786 | ||
- 0.03252306580543518 | ||
- 0.03256518766283989 | ||
- 0.03239353746175766 |
Oops, something went wrong.