Skip to content

Data and code for paper "M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models"

Notifications You must be signed in to change notification settings

aisingapore/M3Exam

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

M3Exam: A Multilingual 🌏, Multimodal 🖼, Multilevel 📈 Benchmark for LLMs

This is the repository for M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models.

TL;DR: We introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context.

image

Data

Access the data

  • You can download the data from here.
  • The downloaded folder will be encrypted (to prevent some automatic crawling scripts). Please get the password from the bottom of this page.
  • After unzipping the file, you will see the following file structure:
data/
    multimodal-questions/         <- questions requiring images
        xx-questions-image.json   <- file containing the questions, xx is a language
        iamges-xx/                <- folder containg all the images for xx
    text-questions/               <- questions with pure text
        xx-questions-dev.json     <- held-out data (e.g., can be used as in-context examples)
        xx-questions-test.json    <- main test data for evaluation

Data format

  • Questions are stored in json format, you can read each json file to check the data. For example:
with open(f'./data/text-question/{lang}-questions-dev.json', 'w') as f:
    data = json.load(f)  # data is a list of questions
  • Each question is stored in json format:
{
    'question_text': 'Which Civil War event occurred first?',
    'background_description': [],
    'answer_text': '2',
    'options': ['(1) battle of Gettysburg',
    '(2) firing on Fort Sumter',
    '(3) assassination of President Lincoln',
    '(4) Emancipation Proclamation'],
    'need_image': 'no',
    'language': 'english',
    'level': 'mid',
    'subject': 'social',
    'subject_category': 'social-science',
    'year': '2006'
}

Evaluation

  • first you need to fill in your OpenAI API key in the bash files:
python main.py \
--setting zero-shot \
--model chat \
--use_api \
--selected_langs "['english']" \
--api_key #put your key here
  • then you can quickly check by running quick_run.sh, which will run on 10 English questions and produce english-pred.json in the corresponding output folder
  • to evaluate, you can also run eval.sh to check the performance on this 10 examples!
  • to run on more data, you can refer to run.sh for more detailed settings
python main.py \
--setting zero-shot \
--model chat \
--use_api \
--selected_langs "['english']" \
--selected_levels "['low', 'mid', 'high']" \
--num_samples all \
--api_key #put your key here
* specify the languages you want to run through `--selected_langs`
* running on all questions, set `--num_samples all`

Citation

If you find this useful in your research, please consider citing it:

@article{zhang2023m3exam,
      title={M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models},
      author={Wenxuan Zhang and Sharifah Mahani Aljunied and Chang Gao and Yew Ken Chia and Lidong Bing},
      year={2023},
      eprint={2306.05179},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

password: 12317

About

Data and code for paper "M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.9%
  • Shell 2.1%