Skip to content

Commit

Permalink
Merge pull request #72 from vtlim/master
Browse files Browse the repository at this point in the history
NAMD parser for FEP files

Close #7
  • Loading branch information
orbeckst authored Mar 21, 2019
2 parents 9857cd6 + d668819 commit 4ed712e
Show file tree
Hide file tree
Showing 5 changed files with 169 additions and 2 deletions.
1 change: 1 addition & 0 deletions docs/parsing.rst
Original file line number Diff line number Diff line change
Expand Up @@ -110,4 +110,5 @@ See the documentation for the package you are using for more details on parser u

gmx
amber
namd

33 changes: 33 additions & 0 deletions docs/parsing/alchemlyb.parsing.namd.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
NAMD parsing
=============
.. automodule:: alchemlyb.parsing.namd

The parsers featured in this module are constructed to properly parse `NAMD`_ ``.fepout`` output files containing derivatives of the Hamiltonian and FEP (BAR) data.
See the NAMD documentation for the `theoretical backdrop <https://www.ks.uiuc.edu/Research/namd/2.13/ug/node60.html>`_ and `implementation details <https://www.ks.uiuc.edu/Research/namd/2.13/ug/node61.html>`_.

If you wish to use BAR on FEP data, be sure to provide the ``.fepout`` file from both the forward and reverse transformations.

After calling :meth:`~alchemlyb.parsing.namd.extract_u_nk` on the forward and reverse work values, these dataframes can be combined into one:

.. code-block:: python
# replace zeroes in initial dataframe with nan
u_nk_fwd.replace(0, np.nan, inplace=True)
# replace the nan values with the reverse dataframe --
# this should not overwrite any of the fwd work values
u_nk_fwd[u_nk_fwd.isnull()] = u_nk_rev
# replace remaining nan values back to zero
u_nk_fwd.replace(np.nan, 0, inplace=True)
# sort final dataframe by `fep-lambda` (as opposed to `timestep`)
u_nk = u_nk_fwd.sort_index(level=u_nk_fwd.index.names[1:])
The ``fep-lambda`` index states at which lambda this particular frame was sampled, whereas the columns are the evaluations of the Hamiltonian (or the potential energy U) at other lambdas (sometimes called "foreign lambdas").

.. _`NAMD`: http://www.ks.uiuc.edu/Research/namd/


API Reference
-------------
This submodule includes these parsing functions:

.. autofunction:: alchemlyb.parsing.namd.extract_u_nk
4 changes: 2 additions & 2 deletions src/alchemlyb/estimators/bar_.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ class BAR(BaseEstimator):
relative_tolerance : float, optional
Set to determine the relative tolerance convergence criteria.
method : str, optional, defualt='false-position'
method : str, optional, default='false-position'
choice of method to solve BAR nonlinear equations,
one of 'self-consistent-iteration' or 'false-position' (default: 'false-position')
Expand Down Expand Up @@ -57,7 +57,7 @@ def fit(self, u_nk):
Parameters
----------
u_nk : DataFrame
u_nk : DataFrame
u_nk[n,k] is the reduced potential energy of uncorrelated
configuration n evaluated at state k.
Expand Down
87 changes: 87 additions & 0 deletions src/alchemlyb/parsing/namd.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
"""Parsers for extracting alchemical data from `NAMD <http://www.ks.uiuc.edu/Research/namd/>`_ output files.
"""
import pandas as pd
import numpy as np
from .util import anyopen

def extract_u_nk(fep_file):
"""Return reduced potentials `u_nk` from NAMD fepout file.
Parameters
----------
fep_file : str
Path to fepout file to extract data from.
Returns
-------
u_nk : DataFrame
Potential energy for each alchemical state (k) for each frame (n).
"""
# lists to get timesteps and work values of each window
win_ts = []
win_de = []

# create dataframe for results
u_nk = pd.DataFrame(columns=['timestep','fep-lambda'])

# boolean flag to parse data after equil time
parsing = False

# open and get data from fep file.
with anyopen(fep_file, 'r') as f:
data = f.readlines()

for line in data:
l = line.strip().split()

# this line marks end of window; dump data into dataframe
if '#Free' in l:

# convert last window's work and timestep values to np arrays
win_de_arr = np.asarray(win_de)
win_ts_arr = np.asarray(win_ts)

# extract lambda values for finished window
# lambda1 = sampling lambda (row), lambda2 = evaluated lambda (col)
lambda1 = "{0:.2f}".format(float(l[7]))
lambda2 = "{0:.2f}".format(float(l[8]))

# create dataframe of timestep and work values
# this window's data goes in row LAMBDA1 and column LAMBDA2
tempDF = pd.DataFrame({
'timestep':win_ts_arr,
'fep-lambda': np.full(len(win_de_arr),lambda1),
lambda1:0,
lambda2:win_de_arr})

# join the new window's df to existing df
u_nk = pd.concat([u_nk, tempDF])
u_nk.fillna(0, inplace=True)

# reset values for next window of fepout file
win_de = []
win_ts = []
parsing = False

# append work value from 'dE' column of fepout file
if parsing:
win_de.append(float(l[6]))
win_ts.append(float(l[1]))

# turn parsing on after line 'STARTING COLLECTION OF ENSEMBLE AVERAGE'
if '#STARTING' in l:
parsing = True

# create last dataframe for fep-lambda at last LAMBDA2
tempDF = pd.DataFrame({
'timestep':win_ts_arr,
'fep-lambda': lambda2})
u_nk = pd.concat([u_nk, tempDF])
u_nk.fillna(0, inplace=True)

u_nk.set_index(['timestep','fep-lambda'], inplace=True)

return u_nk

46 changes: 46 additions & 0 deletions src/alchemlyb/tests/parsing/test_namd.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
"""NAMD parser tests.
"""

from alchemlyb.parsing.namd import extract_u_nk
from alchemtest.namd import load_tyr2ala
from numpy.testing import assert_almost_equal


def test_u_nk():
"""Test that u_nk has the correct form when extracted from files.
"""
dataset = load_tyr2ala()

for direction in dataset['data']:
for filename in dataset['data'][direction]:
u_nk = extract_u_nk(filename)

assert u_nk.index.names == ['timestep', 'fep-lambda']
if direction == 'forward':
assert u_nk.shape == (21021, 21)
elif direction == 'backward':
assert u_nk.shape == (21021, 21)

def test_bar_namd():
"""Test BAR calculation on NAMD data.
"""
from alchemlyb.estimators import BAR
import numpy as np

# load data
dataset = load_tyr2ala()
u_nk1 = extract_u_nk(dataset['data']['forward'][0])
u_nk2 = extract_u_nk(dataset['data']['backward'][0])

# combine dataframes of fwd and rev directions
u_nk1.replace(0, np.nan, inplace=True)
u_nk1[u_nk1.isnull()] = u_nk2
u_nk1.replace(np.nan, 0, inplace=True)
u_nk = u_nk1.sort_index(level=u_nk1.index.names[1:])

# after loading BOTH fwd and rev data, do BAR calculation
bar = BAR()
bar.fit(u_nk)
dg = (bar.delta_f_.iloc[0].iloc[-1])
assert_almost_equal(dg, 6.03126982925, decimal=4)

0 comments on commit 4ed712e

Please sign in to comment.