-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
170 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# New Augmenter `Cartoon` #463 | ||
|
||
* Added module `imgaug.augmenters.artistic`. | ||
* Added function `imgaug.augmenters.artistic.stylize_cartoon(image)`. | ||
* Added augmenter `imgaug.augmenters.artistic.Cartoon`. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
""" | ||
Augmenters that perform apply artistic image filters. | ||
List of augmenters: | ||
* Cartoon | ||
""" | ||
|
||
from __future__ import print_function, division, absolute_import | ||
|
||
import numpy as np | ||
import cv2 | ||
|
||
from . import meta | ||
from .. import dtypes as iadt | ||
|
||
|
||
def stylize_cartoon(image): | ||
iadt.gate_dtypes( | ||
image, | ||
allowed=["uint8"], | ||
disallowed=["bool", | ||
"uint16", "uint32", "uint64", "uint128", "uint256", | ||
"int8", "int16", "int32", "int64", "int128", "int256", | ||
"float16", "float32", "float64", "float96", "float128", | ||
"float256"], | ||
augmenter=None) | ||
|
||
is_small_image = max(image.shape[0:2]) < 400 | ||
|
||
image = _blur_median(image, 3) | ||
image_seg = np.zeros_like(image) | ||
|
||
if is_small_image: | ||
spatial_window_radius = 10 | ||
color_window_radius = 20 | ||
else: | ||
spatial_window_radius = 15 | ||
color_window_radius = 40 | ||
|
||
cv2.pyrMeanShiftFiltering(image, | ||
sp=spatial_window_radius, | ||
sr=color_window_radius, | ||
dst=image_seg) | ||
|
||
if max(image.shape[0:2]) < 400: | ||
edges_raw = _find_edges_canny(image_seg) | ||
else: | ||
edges_raw = _find_edges_laplacian(image_seg) | ||
|
||
edges = edges_raw | ||
|
||
edges = ((edges > 100) * 255).astype(np.uint8) | ||
edges = _suppress_edge_blobs(edges, 3, 8, inverse=False) | ||
edges = _suppress_edge_blobs(edges, 5, 3, inverse=True) | ||
|
||
return _saturate(_blend_edges(image_seg, edges)) | ||
|
||
|
||
def _saturate(image): | ||
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) | ||
sat = hsv[:, :, 1] | ||
sat = np.clip(sat.astype(np.int32) * 2, 0, 255).astype(np.uint8) | ||
hsv[:, :, 1] = sat | ||
image_sat = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) | ||
return image_sat | ||
|
||
|
||
def _find_edges_canny(image): | ||
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | ||
edges = cv2.Canny(image_gray, 200, 200) | ||
return edges | ||
|
||
|
||
def _find_edges_laplacian(image): | ||
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | ||
edges_f = cv2.Laplacian(image_gray / 255.0, cv2.CV_64F) | ||
edges_f = np.abs(edges_f) | ||
edges_f = edges_f ** 2 | ||
vmax = np.percentile(edges_f, 90) | ||
edges_f = np.clip(edges_f, 0.0, vmax) / vmax | ||
|
||
edges_uint8 = np.clip(np.round(edges_f * 255), 0, 255.0).astype(np.uint8) | ||
edges_uint8 = _blur_median(edges_uint8, 3) | ||
edges_uint8 = _threshold(edges_uint8, 50) | ||
|
||
return edges_uint8 | ||
|
||
|
||
def _blur_median(image, ksize): | ||
return cv2.medianBlur(image, ksize) | ||
|
||
|
||
def _threshold(image, thresh): | ||
assert image.ndim == 2 | ||
mask = (image < thresh) | ||
result = np.copy(image) | ||
result[mask] = 0 | ||
return result | ||
|
||
|
||
def _suppress_edge_blobs(edges, size, thresh, inverse): | ||
kernel = np.ones((size, size), dtype=np.float32) | ||
counts = cv2.filter2D(edges / 255.0, -1, kernel) | ||
|
||
if inverse: | ||
mask = (counts < thresh) | ||
else: | ||
mask = (counts >= thresh) | ||
|
||
edges = np.copy(edges) | ||
edges[mask] = 0 | ||
return edges | ||
|
||
|
||
def _blend_edges(image, image_edges): | ||
assert image_edges.dtype.name == "uint8" | ||
assert image_edges.ndim == 2 | ||
image_edges = 1.0 - (image_edges / 255.0) | ||
image_edges = np.tile(image_edges[..., np.newaxis], (1, 1, 3)) | ||
return np.clip( | ||
np.round(image * image_edges), | ||
0.0, 255.0 | ||
).astype(np.uint8) | ||
|
||
|
||
class Cartoon(meta.Augmenter): | ||
"""Convert the style of images to a more cartoonish one. | ||
Parameters | ||
---------- | ||
name : None or str, optional | ||
See :func:`imgaug.augmenters.meta.Augmenter.__init__`. | ||
deterministic : bool, optional | ||
See :func:`imgaug.augmenters.meta.Augmenter.__init__`. | ||
random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.bit_generator.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional | ||
See :func:`imgaug.augmenters.meta.Augmenter.__init__`. | ||
Examples | ||
-------- | ||
>>> import numpy as np | ||
>>> import imgaug.augmenters as iaa | ||
>>> image = np.arange(5*5*3).astype(np.uint8).reshape((5, 5, 3)) | ||
>>> aug = iaa.Cartoon() | ||
>>> image_aug = aug(image=image) | ||
Create an example image, then apply a cartoon filter to it. | ||
""" | ||
def __init__(self, name=None, deterministic=False, random_state=None): | ||
super(Cartoon, self).__init__( | ||
name=name, deterministic=deterministic, random_state=random_state) | ||
|
||
def _augment_batch(self, batch, random_state, parents, hooks): | ||
if batch.images is not None: | ||
for image in batch.images: | ||
image[...] = stylize_cartoon(image) | ||
return batch | ||
|
||
def get_parameters(self): | ||
return [] |