Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Autocontrast #479

Merged
merged 2 commits into from
Nov 23, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions changelogs/master/added/20191102_autocontrast.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Autocontrast #479

* Added `imgaug.augmenters.contrast.autocontrast()`, a function with identical
inputs and outputs to `PIL.ImageOps.autocontrast`.
* Added `imgaug.augmenters.contrast.Autocontrast`.
248 changes: 246 additions & 2 deletions imgaug/augmenters/contrast.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,16 +73,20 @@ def _augment_batch(self, batch, random_state, parents, hooks):
gen = enumerate(zip(images, per_channel, rss[1:]))
for i, (image, per_channel_i, rs) in gen:
nb_channels = 1 if per_channel_i <= 0.5 else image.shape[2]
# TODO improve efficiency by sampling once
samples_i = [
param.draw_samples((nb_channels,), random_state=rs)
for param in self.params1d]
if per_channel_i > 0.5:
input_dtype = image.dtype
image_aug = image.astype(np.float64)
# TODO This was previously a cast of image to float64. Do the
# adjust_* functions return float64?
result = []
for c in sm.xrange(nb_channels):
samples_i_c = [sample_i[c] for sample_i in samples_i]
args = tuple([image[..., c]] + samples_i_c)
image_aug[..., c] = self.func(*args)
result.append(self.func(*args))
image_aug = np.stack(result, axis=-1)
image_aug = image_aug.astype(input_dtype)
else:
# don't use something like samples_i[...][0] here, because
Expand Down Expand Up @@ -585,6 +589,168 @@ def _equalize_pil(image, mask=None):
)


def autocontrast(image, cutoff=0, ignore=None):
"""Maximize (normalize) image contrast.

This function calculates a histogram of the input image, removes
**cutoff** percent of the lightest and darkest pixels from the histogram,
and remaps the image so that the darkest pixel becomes black (``0``), and
the lightest becomes white (``255``).

This function has identical inputs and outputs to
:func:`PIL.ImageOps.autocontrast`. The speed almost identical.

dtype support::

* ``uint8``: yes; fully tested
* ``uint16``: no
* ``uint32``: no
* ``uint64``: no
* ``int8``: no
* ``int16``: no
* ``int32``: no
* ``int64``: no
* ``float16``: no
* ``float32``: no
* ``float64``: no
* ``float128``: no
* ``bool``: no

Parameters
----------
image : ndarray
The image for which to enhance the contrast.

cutoff : number
How many percent to cut off at the low and high end of the
histogram. E.g. ``20`` will cut off the lowest and highest ``20%``
of values. Expected value range is ``[0, 100]``.

ignore : None or int or iterable of int
Intensity values to ignore, i.e. to treat as background. If ``None``,
no pixels will be ignored. Otherwise exactly the given intensity
value(s) will be ignored.

Returns
-------
ndarray
Contrast-enhanced image.

"""
assert image.dtype.name == "uint8", (
"Can only apply autocontrast to uint8 images, got dtype %s." % (
image.dtype.name,))

if 0 in image.shape:
return np.copy(image)

standard_channels = (image.ndim == 2 or image.shape[2] == 3)

if cutoff and standard_channels:
return _autocontrast_pil(image, cutoff, ignore)
return _autocontrast(image, cutoff, ignore)


def _autocontrast_pil(image, cutoff, ignore):
import PIL.Image
import PIL.ImageOps
return np.asarray(
PIL.ImageOps.autocontrast(
PIL.Image.fromarray(image),
cutoff=cutoff, ignore=ignore
)
)


# This function is only faster than the corresponding PIL function if no
# cutoff is used.
# C901 is "<functionname> is too complex"
def _autocontrast(image, cutoff, ignore): # noqa: C901
if ignore is not None and not ia.is_iterable(ignore):
ignore = [ignore]

result = np.empty_like(image)
if result.ndim == 2:
result = result[..., np.newaxis]
nb_channels = image.shape[2] if image.ndim >= 3 else 1
for c_idx in sm.xrange(nb_channels):
# using [0] instead of [int(c_idx)] allows this to work with >4
# channels
if image.ndim == 2:
image_c = image
else:
image_c = image[:, :, c_idx:c_idx+1]
h = cv2.calcHist([image_c], [0], None, [256], [0, 256])
if ignore is not None:
h[ignore] = 0

if cutoff:
cs = np.cumsum(h)
n = cs[-1]
cut = n * cutoff // 100

# remove cutoff% pixels from the low end
lo_cut = cut - cs
lo_cut_nz = np.nonzero(lo_cut <= 0.0)[0]
if len(lo_cut_nz) == 0:
lo = 255
else:
lo = lo_cut_nz[0]
if lo > 0:
h[:lo] = 0
h[lo] = lo_cut[lo]

# remove cutoff% samples from the hi end
cs_rev = np.cumsum(h[::-1])
hi_cut = cs_rev - cut
hi_cut_nz = np.nonzero(hi_cut > 0.0)[0]
if len(hi_cut_nz) == 0:
hi = -1
else:
hi = 255 - hi_cut_nz[0]
h[hi+1:] = 0
if hi > -1:
h[hi] = hi_cut[255-hi]

# find lowest/highest samples after preprocessing
for lo, lo_val in enumerate(h):
if lo_val:
break
for hi in range(255, -1, -1):
if h[hi]:
break
if hi <= lo:
# don't bother
lut = np.arange(256)
else:
scale = 255.0 / (hi - lo)
offset = -lo * scale
ix = np.arange(256).astype(np.float64) * scale + offset
ix = np.clip(ix, 0, 255).astype(np.uint8)
lut = ix
lut = np.array(lut, dtype=np.uint8)

# Vectorized implementation of above block.
# This is overall slower.
# h_nz = np.nonzero(h)[0]
# if len(h_nz) <= 1:
# lut = np.arange(256).astype(np.uint8)
# else:
# lo = h_nz[0]
# hi = h_nz[-1]
#
# scale = 255.0 / (hi - lo)
# offset = -lo * scale
# ix = np.arange(256).astype(np.float64) * scale + offset
# ix = np.clip(ix, 0, 255).astype(np.uint8)
# lut = ix

result[:, :, c_idx] = cv2.LUT(image_c, lut)
if image.ndim == 2:
return result[..., 0]
return result


class GammaContrast(_ContrastFuncWrapper):
"""
Adjust image contrast by scaling pixel values to ``255*((v/255)**gamma)``.
Expand Down Expand Up @@ -946,6 +1112,84 @@ def get_parameters(self):
return []


class Autocontrast(_ContrastFuncWrapper):
"""Adjust contrast by cutting off ``p%`` of lowest/highest histogram values.

This augmenter is analogous to :func:`PIL.ImageOps.autocontrast`.

See :func:`imgaug.augmenters.contrast.autocontrast` for more details.

dtype support::

See :func:`imgaug.augmenters.contrast.autocontrast`.

Parameters
----------
cutoff : int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional
Percentage of values to cut off from the low and high end of each
image's histogram, before stretching it to ``[0, 255]``.

* If ``int``: The value will be used for all images.
* If ``tuple`` ``(a, b)``: A value will be uniformly sampled from
the discrete interval ``[a..b]`` per image.
* If ``list``: A random value will be sampled from the list
per image.
* If ``StochasticParameter``: A value will be sampled from that
parameter per image.

per_channel : bool or float, optional
Whether to use the same value for all channels (``False``) or to
sample a new value for each channel (``True``). If this value is a
float ``p``, then for ``p`` percent of all images `per_channel` will
be treated as ``True``, otherwise as ``False``.

name : None or str, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.

deterministic : bool, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.

random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.bit_generator.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.

Examples
--------
>>> import imgaug.augmenters as iaa
>>> aug = iaa.Autocontrast()

Modify the contrast of images by cutting off the ``0`` to ``20%`` lowest
and highest values from the histogram, then stretching it to full length.

>>> aug = iaa.Autocontrast((10, 20), per_channel=True)

Modify the contrast of images by cutting off the ``10`` to ``20%`` lowest
and highest values from the histogram, then stretching it to full length.
The cutoff value is sampled per *channel* instead of per *image*.

"""
def __init__(self, cutoff=(0, 20), per_channel=False,
name=None, deterministic=False, random_state=None):
params1d = [
iap.handle_discrete_param(
cutoff, "cutoff", value_range=(0, 49), tuple_to_uniform=True,
list_to_choice=True)
]
func = autocontrast

super(Autocontrast, self).__init__(
func, params1d, per_channel,
dtypes_allowed=["uint8"],
dtypes_disallowed=["uint16", "uint32", "uint64",
"int8", "int16", "int32", "int64",
"float16", "float32", "float64",
"float16", "float32", "float64", "float96",
"float128", "float256", "bool"],
name=name,
deterministic=deterministic,
random_state=random_state
)


# TODO maybe offer the other contrast augmenters also wrapped in this, similar
# to CLAHE and HistogramEqualization?
# this is essentially tested by tests for CLAHE
Expand Down
Loading