This is a Python package that lets you safely evaluate certain AST nodes without triggering arbitrary code that may have unwanted side effects.
It can be installed from PyPI:
pip install pure_eval
To demonstrate usage, suppose we have an object defined as follows:
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
@property
def area(self):
print("Calculating area...")
return self.width * self.height
rect = Rectangle(3, 5)
Given the rect
object, we want to evaluate whatever expressions we can in this source code:
source = "(rect.width, rect.height, rect.area)"
This library works with the AST, so let's parse the source code and peek inside:
import ast
tree = ast.parse(source)
the_tuple = tree.body[0].value
for node in the_tuple.elts:
print(ast.dump(node))
Output:
Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load())
Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load())
Attribute(value=Name(id='rect', ctx=Load()), attr='area', ctx=Load())
Now to actually use the library. First construct an Evaluator:
from pure_eval import Evaluator
evaluator = Evaluator({"rect": rect})
The argument to Evaluator
should be a mapping from variable names to their values. Or if you have access to the stack frame where rect
is defined, you can instead use:
evaluator = Evaluator.from_frame(frame)
Now to evaluate some nodes, using evaluator[node]
:
print("rect.width:", evaluator[the_tuple.elts[0]])
print("rect:", evaluator[the_tuple.elts[0].value])
Output:
rect.width: 3
rect: <__main__.Rectangle object at 0x105b0dd30>
OK, but you could have done the same thing with eval
. The useful part is that it will refuse to evaluate the property rect.area
because that would trigger unknown code. If we try, it'll raise a CannotEval
exception.
from pure_eval import CannotEval
try:
print("rect.area:", evaluator[the_tuple.elts[2]]) # fails
except CannotEval as e:
print(e) # prints CannotEval
To find all the expressions that can be evaluated in a tree:
for node, value in evaluator.find_expressions(tree):
print(ast.dump(node), value)
Output:
Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load()) 3
Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load()) 5
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
Note that this includes rect
three times, once for each appearance in the source code. Since all these nodes are equivalent, we can group them together:
from pure_eval import group_expressions
for nodes, values in group_expressions(evaluator.find_expressions(tree)):
print(len(nodes), "nodes with value:", values)
Output:
1 nodes with value: 3
1 nodes with value: 5
3 nodes with value: <__main__.Rectangle object at 0x10d374d30>
If we want to list all the expressions in a tree, we may want to filter out certain expressions whose values are obvious. For example, suppose we have a function foo
:
def foo():
pass
If we refer to foo
by its name as usual, then that's not interesting:
from pure_eval import is_expression_interesting
node = ast.parse('foo').body[0].value
print(ast.dump(node))
print(is_expression_interesting(node, foo))
Output:
Name(id='foo', ctx=Load())
False
But if we refer to it by a different name, then it's interesting:
node = ast.parse('bar').body[0].value
print(ast.dump(node))
print(is_expression_interesting(node, foo))
Output:
Name(id='bar', ctx=Load())
True
In general is_expression_interesting
returns False for the following values:
- Literals (e.g.
123
,'abc'
,[1, 2, 3]
,{'a': (), 'b': ([1, 2], [3])}
) - Variables or attributes whose name is equal to the value's
__name__
, such asfoo
above orself.foo
if it was a method. - Builtins (e.g.
len
) referred to by their usual name.
To make things easier, you can combine finding expressions, grouping them, and filtering out the obvious ones with:
evaluator.interesting_expressions_grouped(root)
To get the source code of an AST node, I recommend asttokens.
Here's a complete example that brings it all together:
from asttokens import ASTTokens
from pure_eval import Evaluator
source = """
x = 1
d = {x: 2}
y = d[x]
"""
names = {}
exec(source, names)
atok = ASTTokens(source, parse=True)
for nodes, value in Evaluator(names).interesting_expressions_grouped(atok.tree):
print(atok.get_text(nodes[0]), "=", value)
Output:
x = 1
d = {1: 2}
y = 2
d[x] = 2