Skip to content

alhad-deshpande/arrow-cpp-feedstock

 
 

Repository files navigation

About arrow-cpp-ext

Home: http://github.com/apache/arrow

Package license: Apache-2.0

Feedstock license: BSD-3-Clause

Summary: C++ libraries for Apache Arrow

Current build status

Azure
VariantStatus
linux_64_c_compiler_version7cuda_compiler_version10.2cxx_compiler_version7numpy1.18python3.7.____cpython variant
linux_64_c_compiler_version7cuda_compiler_version10.2cxx_compiler_version7numpy1.18python3.8.____cpython variant
linux_64_c_compiler_version7cuda_compiler_version10.2cxx_compiler_version7numpy1.19python3.9.____cpython variant
linux_64_c_compiler_version7cuda_compiler_version10.2cxx_compiler_version7numpy1.21python3.10.____cpython variant
linux_64_c_compiler_version9cuda_compiler_versionNonecxx_compiler_version9numpy1.18python3.7.____cpython variant
linux_64_c_compiler_version9cuda_compiler_versionNonecxx_compiler_version9numpy1.18python3.8.____cpython variant
linux_64_c_compiler_version9cuda_compiler_versionNonecxx_compiler_version9numpy1.19python3.9.____cpython variant
linux_64_c_compiler_version9cuda_compiler_versionNonecxx_compiler_version9numpy1.21python3.10.____cpython variant
linux_aarch64_numpy1.18python3.7.____cpython variant
linux_aarch64_numpy1.18python3.8.____cpython variant
linux_aarch64_numpy1.19python3.9.____cpython variant
linux_aarch64_numpy1.21python3.10.____cpython variant
linux_ppc64le_numpy1.18python3.7.____cpython variant
linux_ppc64le_numpy1.18python3.8.____cpython variant
linux_ppc64le_numpy1.19python3.9.____cpython variant
linux_ppc64le_numpy1.21python3.10.____cpython variant
osx_64_numpy1.18python3.7.____cpython variant
osx_64_numpy1.18python3.8.____cpython variant
osx_64_numpy1.19python3.9.____cpython variant
osx_64_numpy1.21python3.10.____cpython variant
osx_arm64_numpy1.19python3.8.____cpython variant
osx_arm64_numpy1.19python3.9.____cpython variant
osx_arm64_numpy1.21python3.10.____cpython variant
win_64_cuda_compiler_version10.2numpy1.18python3.7.____cpython variant
win_64_cuda_compiler_version10.2numpy1.18python3.8.____cpython variant
win_64_cuda_compiler_version10.2numpy1.19python3.9.____cpython variant
win_64_cuda_compiler_version10.2numpy1.21python3.10.____cpython variant
win_64_cuda_compiler_versionNonenumpy1.18python3.7.____cpython variant
win_64_cuda_compiler_versionNonenumpy1.18python3.8.____cpython variant
win_64_cuda_compiler_versionNonenumpy1.19python3.9.____cpython variant
win_64_cuda_compiler_versionNonenumpy1.21python3.10.____cpython variant

Current release info

Name Downloads Version Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms

Installing arrow-cpp-ext

Installing arrow-cpp-ext from the conda-forge channel can be achieved by adding conda-forge to your channels with:

conda config --add channels conda-forge
conda config --set channel_priority strict

Once the conda-forge channel has been enabled, arrow-cpp, arrow-cpp-proc, pyarrow, pyarrow-tests can be installed with:

conda install arrow-cpp arrow-cpp-proc pyarrow pyarrow-tests

It is possible to list all of the versions of arrow-cpp available on your platform with:

conda search arrow-cpp --channel conda-forge

About conda-forge

Powered by NumFOCUS

conda-forge is a community-led conda channel of installable packages. In order to provide high-quality builds, the process has been automated into the conda-forge GitHub organization. The conda-forge organization contains one repository for each of the installable packages. Such a repository is known as a feedstock.

A feedstock is made up of a conda recipe (the instructions on what and how to build the package) and the necessary configurations for automatic building using freely available continuous integration services. Thanks to the awesome service provided by CircleCI, AppVeyor and TravisCI it is possible to build and upload installable packages to the conda-forge Anaconda-Cloud channel for Linux, Windows and OSX respectively.

To manage the continuous integration and simplify feedstock maintenance conda-smithy has been developed. Using the conda-forge.yml within this repository, it is possible to re-render all of this feedstock's supporting files (e.g. the CI configuration files) with conda smithy rerender.

For more information please check the conda-forge documentation.

Terminology

feedstock - the conda recipe (raw material), supporting scripts and CI configuration.

conda-smithy - the tool which helps orchestrate the feedstock. Its primary use is in the construction of the CI .yml files and simplify the management of many feedstocks.

conda-forge - the place where the feedstock and smithy live and work to produce the finished article (built conda distributions)

Updating arrow-cpp-ext-feedstock

If you would like to improve the arrow-cpp-ext recipe or build a new package version, please fork this repository and submit a PR. Upon submission, your changes will be run on the appropriate platforms to give the reviewer an opportunity to confirm that the changes result in a successful build. Once merged, the recipe will be re-built and uploaded automatically to the conda-forge channel, whereupon the built conda packages will be available for everybody to install and use from the conda-forge channel. Note that all branches in the conda-forge/arrow-cpp-ext-feedstock are immediately built and any created packages are uploaded, so PRs should be based on branches in forks and branches in the main repository should only be used to build distinct package versions.

In order to produce a uniquely identifiable distribution:

  • If the version of a package is not being increased, please add or increase the build/number.
  • If the version of a package is being increased, please remember to return the build/number back to 0.

Feedstock Maintainers

About

A conda-smithy repository for arrow-cpp.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 62.0%
  • Batchfile 36.3%
  • Python 1.7%