Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Figure for plotting Pareto frontier (Flops x Perf) #753

Merged
merged 9 commits into from
Jan 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,9 @@ train = [
all = [
"ai2-olmo[dev,train]",
]
figures = [
"matplotlib",
]

[project.urls]
Homepage = "https://github.com/allenai/OLMo"
Expand Down
308 changes: 308 additions & 0 deletions scripts/flops_by_perf_figure.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
"""

Plot for the performance vs FLOPs figure.

CSV file of results should look like:

Model,FLOPs,Average,ARC Challenge,HSwag,WinoG,MMLU,DROP,NQ,AGIEval,GSM8k,MMLU Pro,TriviaQA
Amber-7B,5.091E+22,35.2,44.9,74.5,65.5,24.7,26.1,18.7,21.8,4.8,11.7,59.3
DCLM-7B,1.033E+23,56.9,79.8,82.3,77.3,64.4,39.3,28.8,47.5,46.1,31.3,72.1
Gemma-2-9B,4.436E+23,67.8,89.5,87.3,78.8,70.6,63,38,57.3,70.1,42,81.8
Llama-2-13B,1.562E+23,54.1,67.3,83.9,74.9,55.7,45.6,38.4,41.5,28.1,23.9,81.3
Llama-3.1-8B,7.227E+23,61.8,79.5,81.6,76.6,66.9,56.4,33.9,51.3,56.5,34.7,80.3
MAP-Neo-7B,2.106E+23,49.6,78.4,72.8,69.2,58,39.4,28.9,45.8,12.5,25.9,65.1
Mistral-7B-v0.3,,58.8,78.3,83.1,77.7,63.5,51.8,37.2,47.3,40.1,30,79.3
Mistral-Nemo-Bs-12B,,66.9,85.2,85.6,81.5,69.5,69.2,39.7,54.7,62.1,36.7,84.6
OLMo-0424-7B,8.679E+22,50.7,66.9,80.1,73.6,54.3,50,29.6,43.9,27.7,22.1,58.8
OLMo-2-1124-13B,4.609E+23,68.3,83.5,86.4,81.5,67.5,70.7,46.7,54.2,75.1,35.1,81.9
OLMo-2-1124-7B,1.771E+23,62.9,79.8,83.8,77.2,63.7,60.8,36.9,50.4,67.5,31,78
OLMo-7B,1.018E+23,38.3,46.4,78.1,68.5,28.3,27.3,24.8,23.7,9.2,12.1,64.1
Qwen-2.5-14B,1.595E+24,72.2,94.0,94,80,79.3,51.5,37.3,71,83.4,52.8,79.1
Qwen-2.5-7B,8.225E+23,67.4,89.5,89.7,74.2,74.4,55.8,29.9,63.7,81.5,45.8,69.4
StableLM-2-12B,2.929E+23,62.2,81.9,84.5,77.7,62.4,55.5,37.6,50.9,62,29.3,79.9
Zamba-2-7B,,65.2,92.2,89.4,79.6,68.5,51.7,36.5,55.5,67.2,32.8,78.8

Invocation looks like:

python scripts/flops_by_perf_figure.py /path/to/results.csv output/

@kyleclo, @soldni

"""

import argparse
import os

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from cached_path import cached_path
from matplotlib import font_manager

ap = argparse.ArgumentParser()
ap.add_argument("results_data_path", type=str, help="Path to the results data CSV file.")
ap.add_argument("output_dir", type=str, help="Path to the output directory")
ap.add_argument(
"--manrope-medium-font-path",
type=str,
help="Path to the Manrope Medium font file",
default="https://dolma-artifacts.org/Manrope-Medium.ttf",
)
args = ap.parse_args()

# Add Manrope font
font_manager.fontManager.addfont(cached_path(args.manrope_medium_font_path))
plt.rcParams["font.family"] = "Manrope"
plt.rcParams["font.weight"] = "medium"


os.makedirs(args.output_dir, exist_ok=True)
OUTPUT_PATHS = [f"{args.output_dir}/olmo2.pdf", f"{args.output_dir}/olmo2.png"]
df = pd.read_csv(args.results_data_path)

# don't count Model, Flops, and Average columns
num_datasets = len(df.columns) - 3

MODEL_COLUMN_NAME = "Model"
CATEGORY_COLUMN_NAME = "category"
FLOPS_COLUMN_NAME = "FLOPs"
METRIC_COLUMN_NAME = "Average"
COLOR_COLUMN_NAME = "color"
OFFSET_COLUMN_NAME = "label_offset"
MARKER_COLUMN_NAME = "marker"

AI2_YELLOW = "#fff500"
AI2_ORANGE = "#f65834"
AI2_DARK_TEAL = "#0a3235"
AI2_OFF_WHITE = "#faf2e9"
AI2_TEAL = "#105257"
AI2_PINK = "#f0529c"
AI2_PURPLE = "#b11be8"
AI2_GREEN = "#0fcb8c"

# remove Zamba model (SSM, not a language model)
df = df[df[MODEL_COLUMN_NAME] != "Zamba-2-7B"]

model_name_to_open_status = {
"Amber-7B": "Other fully open",
"DCLM-7B": "Other fully open",
"Mistral-7B-v0.3": "Open weights",
"Mistral-Nemo-Bs-12B": "Open weights",
"Gemma-2-9B": "Open weights",
"Llama-2-13B": "Open weights",
"Llama-3.1-8B": "Open weights",
"MAP-Neo-7B": "Other fully open",
"Zamba-2-7B": "Partially open",
"OLMo-0424-7B": "Previous OLMo",
"OLMo-2-1124-13B": "Latest OLMo",
"OLMo-2-1124-7B": "Latest OLMo",
"OLMo-2-13B": "Latest OLMo",
"OLMo-2-7B": "Latest OLMo",
"OLMo-7B": "Previous OLMo",
"Qwen-2.5-14B": "Open weights",
"Qwen-2.5-7B": "Open weights",
"StableLM-2-12B": "Partially open",
}

# Add a column for model category based on the groupings
df[CATEGORY_COLUMN_NAME] = df[MODEL_COLUMN_NAME].map(model_name_to_open_status)

# Add a column for color based on the category
categories = df["category"].unique()
category_to_color = {
"Open weights": "#093235", # dark blue
"Partially open": "#255457", # dark green
"Other fully open": "#6FE0BA", # light green
"Previous OLMo": "#F697C4", # light pink
"Latest OLMo": "#F0529C", # dark pink
}
category_to_text_color = {
"Open weights": AI2_DARK_TEAL,
"Partially open": AI2_DARK_TEAL,
"Other fully open": AI2_DARK_TEAL,
"Previous OLMo": AI2_DARK_TEAL,
"Latest OLMo": "#a51c5c", # darker pink
}


df[COLOR_COLUMN_NAME] = df[CATEGORY_COLUMN_NAME].map(category_to_color)

model_name_to_label_offset = {
"Amber-7B": [10, -2],
"DCLM-7B": [-18, 8],
"Mistral-7B-v0.3": [-20, 8],
"Mistral-Nemo-Bs-12B": [20, -8],
"Gemma-2-9B": [-35, -15],
"Llama-2-13B": [-5, 7],
"Llama-3.1-8B": [-20, -13],
"MAP-Neo-7B": [-20, -15],
"Zamba-2-7B": [-25, 10],
"OLMo-0424-7B": [-35, -15],
"OLMo-2-1124-13B": [-20, 10],
"OLMo-2-1124-7B": [-35, 10],
"OLMo-7B": [-15, 10],
"Qwen-2.5-14B": [-40, -15],
"Qwen-2.5-7B": [-20, -15],
"StableLM-2-12B": [-20, -15],
}

df[OFFSET_COLUMN_NAME] = df[MODEL_COLUMN_NAME].map(model_name_to_label_offset)

# markers
category_to_marker = {
"Open weights": "o",
"Partially open": "D",
"Other fully open": "s",
"Previous OLMo": "P",
"Latest OLMo": "*",
}

# Clean up labels
model_name_to_new_name = {
"OLMo-2-1124-13B": "OLMo-2-13B",
"OLMo-2-1124-7B": "OLMo-2-7B",
}
df[MODEL_COLUMN_NAME] = df[MODEL_COLUMN_NAME].replace(model_name_to_new_name)

# marker size
category_to_marker_size = {
"Open weights": 40,
"Partially open": 40,
"Other fully open": 70,
"Previous OLMo": 100,
"Latest OLMo": 150,
}

# alpha
category_to_alpha = {
"Open weights": 1.0,
"Partially open": 0.7,
"Other fully open": 1.0,
"Previous OLMo": 1.0,
"Latest OLMo": 1.0,
}

# Scale
plt.xscale("function", functions=(np.sqrt, np.square))

# Plotting order
desired_order = ["Latest OLMo", "Previous OLMo", "Other fully open", "Partially open", "Open weights"]
for category in categories:
mask = (df[CATEGORY_COLUMN_NAME] == category) & (df[FLOPS_COLUMN_NAME].notna())
data = df[mask]
plt.scatter(
data[FLOPS_COLUMN_NAME],
data[METRIC_COLUMN_NAME],
label=category,
c=data[COLOR_COLUMN_NAME],
marker=category_to_marker[category],
alpha=category_to_alpha[category],
s=category_to_marker_size[category],
)

# Add labels for each point with Manrope Medium
FONTSIZE = 9
for idx, row in df[df[FLOPS_COLUMN_NAME].notna()].iterrows():
plt.annotate(
row[MODEL_COLUMN_NAME],
(row[FLOPS_COLUMN_NAME], row[METRIC_COLUMN_NAME]),
xytext=(row[OFFSET_COLUMN_NAME]),
textcoords="offset points",
fontsize=FONTSIZE,
alpha=1.0,
font="Manrope",
weight="medium",
color=category_to_text_color[model_name_to_open_status[row[MODEL_COLUMN_NAME]]],
)

# x axis tick marks
tick_locations = [4e22, 6e22, 8e22, 1e23, 2e23, 4e23, 6e23, 8e23, 1e24, 2e24]


def format_scientific(x):
exponent = int(np.log10(x))
mantissa = x / (10**exponent)
return f"{int(mantissa)}×10{str(exponent).translate(str.maketrans('0123456789', '⁰¹²³⁴⁵⁶⁷⁸⁹'))}"


tick_labels = [format_scientific(x) for x in tick_locations]
plt.xticks(tick_locations, tick_labels, rotation=45, ha="right", fontsize=8)

# y axis tick marks
plt.yticks(fontsize=8)

# Customize the plot with Manrope Medium
plt.xlabel("Approximate FLOPs", fontsize=10, font="Manrope", weight="medium")
plt.ylabel(f"Avg Performance ({num_datasets} Benchmarks)", fontsize=10, font="Manrope", weight="medium")


# Add grid with custom colors
plt.grid(True, which="major", ls=":", color="#105257", alpha=0.2)
plt.grid(True, which="minor", ls="-", color="#9fbabc", alpha=0.2)

# Also set the tick colors
plt.tick_params(which="major", colors="#105257")
plt.tick_params(which="minor", colors="#9fbabc")

# If you want to change the actual axis line colors as well
plt.gca().spines["left"].set_color("#105257")
plt.gca().spines["bottom"].set_color("#105257")

# Add the legend below the plot
handles, labels = plt.gca().get_legend_handles_labels()
label_to_handle = dict(zip(labels, handles))
ordered_handles = [label_to_handle[label] for label in desired_order]
plt.legend(
ordered_handles,
desired_order,
bbox_to_anchor=(0, 0.97, 1.0, 0.2),
loc="center",
ncol=len(categories),
mode="expand",
borderaxespad=0.0,
fontsize=6,
handletextpad=0.05,
columnspacing=0.5,
frameon=False,
prop={"family": "Manrope", "weight": "medium", "size": 8},
)

# Adjust the layout
plt.tight_layout()
plt.subplots_adjust(top=0.8)

# Remove spines
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["right"].set_visible(False)

# Make Yellow portion
xmin, xmax = plt.gca().get_xlim()
ymin, ymax = plt.gca().get_ylim()

# Convert frontier points to polygon vertices
frontier_models = ["Amber-7B", "OLMo-0424-7B", "DCLM-7B", "OLMo-2-7B", "OLMo-2-13B", "Qwen-2.5-14B"]
frontier_df = df[df[MODEL_COLUMN_NAME].isin(frontier_models)]
frontier_df = frontier_df.set_index(MODEL_COLUMN_NAME)
frontier_df = frontier_df.reindex(frontier_models)
frontier_df = frontier_df.reset_index()

# in order for the line not to appear at the top of the polygon, we need to offset it
polygon_line_width = 1
polygon_offset = (ymax - ymin) * (polygon_line_width / 100)

# Create simple vertices array
X = np.array([[xmin, ymin]]) # Start bottom-left
for _, row in frontier_df.iterrows():
X = np.append(X, [[row[FLOPS_COLUMN_NAME], row[METRIC_COLUMN_NAME]]], axis=0)
X = np.append(X, [[xmax, ymax + polygon_offset]], axis=0) # Top-right corner
X = np.append(X, [[xmin, ymax + polygon_offset]], axis=0) # Back to left

# Create and add polygon
polygon = plt.Polygon(
X, facecolor=AI2_YELLOW, alpha=0.2, zorder=-1, edgecolor=AI2_ORANGE, linestyle="--", linewidth=1.5
)
plt.gca().add_patch(polygon)

# Save the figure
for output_path in OUTPUT_PATHS:
plt.savefig(output_path, dpi=300, bbox_inches="tight")
Loading