Simple and efficient pytorch-native transformer text generation.
Featuring:
- Very low latency
- <1000 lines of python
- No dependencies other than PyTorch and sentencepiece
- int8/int4 quantization
- Speculative decoding
- Tensor parallelism
- Supports Nvidia and AMD GPUs
This is NOT intended to be a "framework" or "library" - it is intended to show off what kind of performance you can get with native PyTorch :) Please copy-paste and fork as you desire.
For an in-depth walkthrough of what's in this codebase, see this blog post.
Download PyTorch nightly Install sentencepiece and huggingface_hub
pip install sentencepiece huggingface_hub
To download llama models, go to https://huggingface.co/meta-llama/Llama-2-7b and go through steps to obtain access.
Then login with huggingface-cli login
Models tested/supported
openlm-research/open_llama_7b
meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-2-13b-chat-hf
meta-llama/Llama-2-70b-chat-hf
codellama/CodeLlama-7b-Python-hf
codellama/CodeLlama-34b-Python-hf
teknium/OpenHermes-2.5-Mistral-7B
For example, to convert Llama-2-7b-chat-hf
export MODEL_REPO=meta-llama/Llama-2-7b-chat-hf
./scripts/prepare.sh $MODEL_REPO
Benchmarks run on an 8xA100-80GB, power limited to 330W with a hybrid cube mesh topology. Note that all benchmarks are run at batch size=1, making the reported tokens/s numbers equivalent to "tokens/s/user". In addition, they are run with a very small prompt length (just 5 tokens).
Model | Technique | Tokens/Second | Memory Bandwidth (GB/s) |
---|---|---|---|
Llama-2-7B | Base | 104.9 | 1397.31 |
8-bit | 155.58 | 1069.20 | |
4-bit (G=32) | 196.80 | 862.69 | |
Llama-2-70B | Base | OOM | |
8-bit | 19.13 | 1322.58 | |
4-bit (G=32) | 25.25 | 1097.66 |
Verifier: Llama-70B (int4), Draft: Llama-7B (int4): 48.4 tok/s
Model | Number of GPUs | Tokens/Second | Memory Bandwidth (GB/s) |
---|---|---|---|
Llama-2-7B | 1 | 104.9 | 1397.31 |
2 | 168.84 | 1181.99 | |
4 | 254.02 | 955.83 | |
8 | 328.43 | 704.10 | |
Llama-2-70B | 1 | OOM | |
2 | 21.32 | 1481.87 | |
4 | 38.01 | 1340.76 | |
8 | 62.50 | 1135.29 |
Model | Technique | Tokens/Second | Memory Bandwidth (GB/s) |
---|---|---|---|
Llama-2-70B | Base | 62.50 | 1135.29 |
8-bit | 80.44 | 752.04 | |
4-bit (G=32) | 90.77 | 548.10 |
Benchmarks run on one GCD of a MI-250x.
Model | Technique | Tokens/Second | Memory Bandwidth (GB/s) |
---|---|---|---|
Llama-2-7B | Base | 76.33 | 1028.70 |
8-bit | 101.86 | 700.06 |
Model definition in model.py
, generation code in generate.py
.
python generate.py --compile --checkpoint_path checkpoints/$MODEL_REPO/model.pth --prompt "Hello, my name is"
To squeeze out a little bit more performance, you can also compile the prefill with --compile_prefill
. This will increase compilation times though.
To generate this version of the model
# Spits out model at checkpoints/$MODEL_REPO/model_int8.pth
python quantize.py --checkpoint_path checkpoints/$MODEL_REPO/model.pth --mode int8
To run with int8, just pass the int8 checkpoint to generate.py.
python generate.py --compile --checkpoint_path checkpoints/$MODEL_REPO/model_int8.pth
To generate int4 version of model
# Spits out model at checkpoints/$MODEL_REPO/model_int4.g32.pth
python quantize.py --checkpoint_path checkpoints/$MODEL_REPO/model.pth --mode int4 --groupsize 32
To run with int4, just pass the int4 checkpoint to generate.py.
python generate.py --checkpoint_path checkpoints/$MODEL_REPO/model_int4.g32.pth --compile
To generate with speculative sampling (DRAFT_MODEL_REPO should point to a smaller model compared with MODEL_REPO).
In this example, the "smaller" model is just the int8 quantized version of the model.
export DRAFT_MODEL_REPO=meta-llama/Llama-2-7b-chat-hf
python generate.py --compile --checkpoint_path checkpoints/$MODEL_REPO/model.pth --draft_checkpoint_path checkpoints/$DRAFT_MODEL_REPO/model_int8.pth
Note: Running on an A100 80GB, albeit power-limited to 330 watts. Empirically, seems like peak bandwidth is about 1700 GB/s.
ENABLE_INTRA_NODE_COMM=1 torchrun --standalone --nproc_per_node=2 generate.py --compile --checkpoint_path checkpoints/$MODEL_REPO/model.pth
We use the EleutherAI evaluation harness to evaluate our model accuracy. To evaluate the accuracy, make sure the evaluation harness is installed and pass your model checkpoint and desired tasks to eval.py.
python eval.py --checkpoint_path checkpoints/$MODEL_REPO/model.pth --compile --tasks hellaswag winogrande
Note: Generative tasks are currently not supported for gpt-fast
Installation Instructions for the evaluation harness: https://github.com/EleutherAI/lm-evaluation-harness/tree/master#install
We have a pure pytorch implementation of GPTQ that utilizes torch._dynamo.export to access the model structure. You can generate a GPTQ quantized version of int4 quantization by using the same command to quantize it but adding 'gptq' to the quantization mode i.e.
# Spits out model at checkpoints/$MODEL_REPO/model_int4-gptq.g32.pth
python quantize.py --mode int4-gptq --calibration_tasks wikitext --calibration_seq_length 2048
You can then eval or generate text with this model in the same way as above.
gpt-fast
is released under the BSD 3 license.
Thanks to:
- Lightning AI for supporting pytorch and work in flash attention, int8 quantization, and LoRA fine-tuning.
- GGML for driving forward fast, on device inference of LLMs
- Karpathy for spearheading simple, interpretable and fast LLM implementations
- MLC-LLM for pushing 4-bit quantization performance on heterogeneous hardware