forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix the aten::mv for pytorch models openvinotoolkit#22073 (openvinoto…
…olkit#22677) ### Details: - *item1* - *...* Add aten::mv operator close openvinotoolkit#22073 ### Tickets: - *ticket-id* --------- Co-authored-by: Ekaterina Aidova <ekaterina.aidova@intel.com> Co-authored-by: Michal Lukaszewski <michal.lukaszewski@intel.com>
- Loading branch information
Showing
2 changed files
with
43 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import numpy as np | ||
import pytest | ||
import torch | ||
from pytorch_layer_test_class import PytorchLayerTest | ||
|
||
class TestMatMulOperation(PytorchLayerTest): | ||
def _prepare_input(self, matrix, vector): | ||
matrix_input = np.array(matrix, dtype=np.float32) | ||
vector_input = np.array(vector, dtype=np.float32) | ||
return matrix_input, vector_input | ||
|
||
def create_model(self, matrix, vector): | ||
class CustomMatMulOperation(torch.nn.Module): | ||
def forward(self, matrix, vector): | ||
return torch.mv(matrix, vector) | ||
|
||
model_class = CustomMatMulOperation() | ||
ref_net = None | ||
return model_class, ref_net, "aten::mv" | ||
|
||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
@pytest.mark.parametrize("matrix, vector, dtype", [ | ||
(np.array([[1, 2], [3, 4]]), np.array([5, 6]), torch.float64), | ||
(np.array([[0, 0], [0, 0]]), np.array([1, 2]), torch.float32), | ||
(np.array([[1, 2, 3], [4, 5, 6]]), np.array([0, 1, 0]), torch.float64), | ||
(np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), np.array([2, 3, 4]), torch.float32), | ||
]) | ||
def test_matmul_operation(self, matrix, vector, dtype, ie_device, precision, ir_version): | ||
matrix_input = torch.tensor(matrix, dtype=torch.float32) | ||
vector_input = torch.tensor(vector, dtype=torch.float32) | ||
|
||
matrix_input = matrix_input.to(dtype=dtype) | ||
vector_input = vector_input.to(dtype=dtype) | ||
|
||
self._test( | ||
*self.create_model(matrix_input, vector_input), | ||
ie_device, | ||
precision, | ||
ir_version, | ||
kwargs_to_prepare_input={"matrix": matrix_input, "vector": vector_input} | ||
) |