1A. Create Embeddings with the notebook azure_ai_vector_search\notebooks\00.create_embeddings.ipynb
1B. Create Azure OPEN AI Embeddings with the notebook azure_ai_vector_search\notebooks\00.create_embeddings_azure.ipynb
The embeddings are created in azure_ai_vector_search\output
The embeddings are docvectors.json
and docvectors_azure.json
- Create the index with the notebook
azure_ai_vector_search\notebooks\01.azure_ai_vector_search_index_creation.ipynb
- Vector Search , Hybrid Search , Exhaustive KNN exact nearest neighbor search, Semantic Hybrid Search using the notebook
azure_ai_vector_search\notebooks\02.azure_ai_vector_search.ipynb
-
azure_ai_vector_search/backend/azure_ai_vector_search.py
is the backend code for the vector search. The code in the notebook is put in a python file for easy deployment. -
azure_ai_vector_search\backend\biz_azure_ai_search.py
is the wrapper for the backend code present inazure_ai_vector_search/backend/azure_ai_vector_search.py
. This file is used to call the backend code from the frontend. -
azure_ai_vector_search\backend\config.py
has the configurations code.