Releases: andersbogsnes/ml_tooling
Releases · andersbogsnes/ml_tooling
Release 0.12.1
0.12.1
- Dataset features can now be easily accessed with the property dataset.features
model.test_estimators
with CV will keep using CV if it's refitting the best estimator.Result
now has a.parameters
attribute to show what parameters generated the result- Switch to pyproject.toml for project metadata
- Updated documentation to use california housing dataset instead of boston
- Updated documentation to remove deprecated parameters from estimators
Release v0.11.0
New functionality
-
Added
load_demo_dataset
function -
If the dataset has no train set
score_estimator
will now runcreate_train_test
with default configurations -
Model.make_prediction
now takes a threshold argument when making a binary classification -
All ML-tooling logging messages now go to stdout instead of stderr
-
Can pass a feature pipeline to
Model
which will then automatically generate a
combined feature_pipeline + estimator Pipeline -
Can pass a feature pipeline to
Dataset.plot
methods, to apply preprocessing
before visualization -
New config implementation. If you need to reset the configuration, you should use
Model.config.reset_config()