Skip to content

Commit

Permalink
add flag for dense svd or sparse svd
Browse files Browse the repository at this point in the history
  • Loading branch information
Li Pu committed Jun 18, 2014
1 parent eb15100 commit 819824b
Show file tree
Hide file tree
Showing 3 changed files with 67 additions and 47 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -39,10 +39,14 @@ object EigenValueDecomposition {
*
* @param mul a function that multiplies the symmetric matrix with a DenseVector.
* @param n dimension of the square matrix (maximum Int.MaxValue).
* @param k number of leading eigenvalues required.
* @param k number of leading eigenvalues required, 0 < k < n.
* @param tol tolerance of the eigs computation.
* @return a dense vector of eigenvalues in descending order and a dense matrix of eigenvectors
* (columns of the matrix). The number of computed eigenvalues might be smaller than k.
* (columns of the matrix).
* @note The number of computed eigenvalues might be smaller than k when some Ritz values do not
* satisfy the convergence criterion specified by tol (see ARPACK Users Guide, Chapter 4.6
* for more details). The maximum number of Arnoldi update iterations is set to 300 in this
* function.
*/
private[mllib] def symmetricEigs(mul: DenseVector => DenseVector, n: Int, k: Int, tol: Double)
: (BDV[Double], BDM[Double]) = {
Expand All @@ -55,10 +59,10 @@ object EigenValueDecomposition {
val tolW = new doubleW(tol)
// number of desired eigenvalues, 0 < nev < n
val nev = new intW(k)
// nev Lanczos vectors are generated are generated in the first iteration
// ncv-nev Lanczos vectors are generated are generated in each subsequent iteration
// nev Lanczos vectors are generated in the first iteration
// ncv-nev Lanczos vectors are generated in each subsequent iteration
// ncv must be smaller than n
val ncv = scala.math.min(2 * k, n)
val ncv = math.min(2 * k, n)

// "I" for standard eigenvalue problem, "G" for generalized eigenvalue problem
val bmat = "I"
Expand All @@ -75,7 +79,7 @@ object EigenValueDecomposition {

var ido = new intW(0)
var info = new intW(0)
var resid:Array[Double] = new Array[Double](n)
var resid = new Array[Double](n)
var v = new Array[Double](n * ncv)
var workd = new Array[Double](n * 3)
var workl = new Array[Double](ncv * (ncv + 8))
Expand Down Expand Up @@ -128,19 +132,20 @@ object EigenValueDecomposition {
// number of computed eigenvalues, might be smaller than k
val computed = iparam(4)

val eigenPairs = java.util.Arrays.copyOfRange(d, 0, computed).zipWithIndex.map{
val eigenPairs = java.util.Arrays.copyOfRange(d, 0, computed).zipWithIndex.map {
r => (r._1, java.util.Arrays.copyOfRange(z, r._2 * n, r._2 * n + n))
}

// sort the eigen-pairs in descending order
val sortedEigenPairs = eigenPairs.sortBy(-1 * _._1)
val sortedEigenPairs = eigenPairs.sortBy(- _._1)

// copy eigenvectors in descending order of eigenvalues
val sortedU = BDM.zeros[Double](n, computed)
sortedEigenPairs.zipWithIndex.map{
sortedEigenPairs.zipWithIndex.foreach {
r => {
val b = r._2 * n
for (i <- 0 until n) {
sortedU.data(r._2 * n + i) = r._1._2(i)
sortedU.data(b + i) = r._1._2(i)
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -207,13 +207,14 @@ class RowMatrix(
* @param v a local DenseVector whose length must match the number of columns of this matrix.
* @return a local DenseVector representing the product.
*/
private[mllib] def multiplyGramianMatrix(v: DenseVector): DenseVector = {
private[mllib] def multiplyGramianMatrixBy(v: DenseVector): DenseVector = {
val n = numCols().toInt
val vbr = rows.context.broadcast(v.toBreeze)

val bv = rows.aggregate(BDV.zeros[Double](n))(
seqOp = (U, r) => {
val rBrz = r.toBreeze
val a = rBrz.dot(v.toBreeze)
val a = rBrz.dot(vbr.value)
rBrz match {
case _: BDV[_] => brzAxpy(a, rBrz.asInstanceOf[BDV[Double]], U)
case _: BSV[_] => brzAxpy(a, rBrz.asInstanceOf[BSV[Double]], U)
Expand All @@ -223,7 +224,7 @@ class RowMatrix(
combOp = (U1, U2) => U1 += U2
)

new DenseVector(bv.data)
Vectors.fromBreeze(bv).asInstanceOf[DenseVector]
}

/**
Expand Down Expand Up @@ -259,7 +260,11 @@ class RowMatrix(
k: Int,
computeU: Boolean = false,
rCond: Double = 1e-9): SingularValueDecomposition[RowMatrix, Matrix] = {
computeSVD(k, computeU, rCond, 1e-9)
if (numCols() < 100) {
computeSVD(k, computeU, rCond, 1e-9, true)
} else {
computeSVD(k, computeU, rCond, 1e-9, false)
}
}

/**
Expand All @@ -274,7 +279,7 @@ class RowMatrix(
* The decomposition is computed by providing a function that multiples a vector with A'A to
* ARPACK, and iteratively invoking ARPACK-dsaupd on master node, from which we recover S and V.
* Then we compute U via easy matrix multiplication as U = A * (V * S^{-1}).
* Note that this approach requires `O(nnz(A))` time.
* Note that this approach requires approximately `O(k * nnz(A))` time.
*
* ARPACK requires k to be strictly less than n. Thus when the requested eigenvalues k = n, a
* non-sparse implementation will be used, which requires `n^2` doubles to fit in memory and
Expand All @@ -294,21 +299,27 @@ class RowMatrix(
* are treated as zero, where sigma(0) is the largest singular value.
* @param tol the numerical tolerance of svd computation. Larger tolerance means fewer iterations,
* but less accurate result.
* @param isDenseSVD invoke dense SVD implementation when isDenseSVD = true. This requires
* `O(n^2)` memory and `O(n^3)` time. For a skinny matrix (m >> n) with small n,
* dense implementation might be faster.
* @return SingularValueDecomposition(U, s, V)
*/
def computeSVD(
k: Int,
computeU: Boolean,
rCond: Double,
tol: Double): SingularValueDecomposition[RowMatrix, Matrix] = {
tol: Double,
isDenseSVD: Boolean): SingularValueDecomposition[RowMatrix, Matrix] = {
val n = numCols().toInt
require(k > 0 && k <= n, s"Request up to n singular values k=$k n=$n.")

val (sigmaSquares: BDV[Double], u: BDM[Double]) = if (k < n) {
EigenValueDecomposition.symmetricEigs(multiplyGramianMatrix, n, k, tol)
val (sigmaSquares: BDV[Double], u: BDM[Double]) = if (!isDenseSVD && k < n) {
EigenValueDecomposition.symmetricEigs(multiplyGramianMatrixBy, n, k, tol)
} else {
logWarning(s"Request full SVD (k = n = $k), while ARPACK requires k strictly less than n. " +
s"Using non-sparse implementation.")
if (!isDenseSVD && k == n) {
logWarning(s"Request full SVD (k = n = $k), while ARPACK requires k strictly less than " +
s"n. Using non-sparse implementation.")
}
val G = computeGramianMatrix()
val (uFull: BDM[Double], sigmaSquaresFull: BDV[Double], vFull: BDM[Double]) =
brzSvd(G.toBreeze.asInstanceOf[BDM[Double]])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -95,38 +95,42 @@ class RowMatrixSuite extends FunSuite with LocalSparkContext {
}

test("svd of a full-rank matrix") {
for (mat <- Seq(denseMat, sparseMat)) {
val localMat = mat.toBreeze()
val (localU, localSigma, localVt) = brzSvd(localMat)
val localV: BDM[Double] = localVt.t.toDenseMatrix
for (k <- 1 to n) {
val svd = mat.computeSVD(k, computeU = true)
val U = svd.U
val s = svd.s
val V = svd.V
assert(U.numRows() === m)
assert(U.numCols() === k)
assert(s.size === k)
assert(V.numRows === n)
assert(V.numCols === k)
assertColumnEqualUpToSign(U.toBreeze(), localU, k)
assertColumnEqualUpToSign(V.toBreeze.asInstanceOf[BDM[Double]], localV, k)
assert(closeToZero(s.toBreeze.asInstanceOf[BDV[Double]] - localSigma(0 until k)))
for (denseSVD <- Seq(true, false)) {
for (mat <- Seq(denseMat, sparseMat)) {
val localMat = mat.toBreeze()
val (localU, localSigma, localVt) = brzSvd(localMat)
val localV: BDM[Double] = localVt.t.toDenseMatrix
for (k <- 1 to n) {
val svd = mat.computeSVD(k, true, 1e-9, 1e-9, denseSVD)
val U = svd.U
val s = svd.s
val V = svd.V
assert(U.numRows() === m)
assert(U.numCols() === k)
assert(s.size === k)
assert(V.numRows === n)
assert(V.numCols === k)
assertColumnEqualUpToSign(U.toBreeze(), localU, k)
assertColumnEqualUpToSign(V.toBreeze.asInstanceOf[BDM[Double]], localV, k)
assert(closeToZero(s.toBreeze.asInstanceOf[BDV[Double]] - localSigma(0 until k)))
}
val svdWithoutU = mat.computeSVD(n - 1, false, 1e-9, 1e-9, denseSVD)
assert(svdWithoutU.U === null)
}
val svdWithoutU = mat.computeSVD(n - 1)
assert(svdWithoutU.U === null)
}
}

test("svd of a low-rank matrix") {
val rows = sc.parallelize(Array.fill(4)(Vectors.dense(1.0, 1.0, 1.0)), 2)
val mat = new RowMatrix(rows, 4, 3)
val svd = mat.computeSVD(2, computeU = true)
assert(svd.s.size === 1, "should not return zero singular values")
assert(svd.U.numRows() === 4)
assert(svd.U.numCols() === 1)
assert(svd.V.numRows === 3)
assert(svd.V.numCols === 1)
for (denseSVD <- Seq(true, false)) {
val rows = sc.parallelize(Array.fill(4)(Vectors.dense(1.0, 1.0, 1.0)), 2)
val mat = new RowMatrix(rows, 4, 3)
val svd = mat.computeSVD(2, true, 1e-9, 1e-9, denseSVD)
assert(svd.s.size === 1, "should not return zero singular values")
assert(svd.U.numRows() === 4)
assert(svd.U.numCols() === 1)
assert(svd.V.numRows === 3)
assert(svd.V.numCols === 1)
}
}

def closeToZero(G: BDM[Double]): Boolean = {
Expand Down

0 comments on commit 819824b

Please sign in to comment.