Skip to content

Commit

Permalink
[CodeCamp2023-154] Add semantic label to the segmentation visualizati…
Browse files Browse the repository at this point in the history
…on results (open-mmlab#3229)

Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

[Add semantic label to the segmentation visualization results
分割可视化结果中加上语义信息
open-mmlab#154](open-mmlab/OpenMMLabCamp#154)

corresponding issue: [跑出来结果之后怎么在结果图片上获取各个语意部分的区域信息?
open-mmlab#2578](open-mmlab#2578)

## Modification

1. mmseg/apis/inference.py, add withLabels in visualizer.add_datasample
call, to indicate whether add semantic label
2. mmseg/visualization/local_visualizer.py, add semantic labels by
opencv; modify the demo comment description
3. mmseg/utils/__init__.py, add bdd100k datasets to test
local_visualizer.py

**Current visualize result**
<img width="637" alt="image"
src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6ef6ce02-1d82-46f8-bde9-a1d69ff62df8">


**Add semantic label**
<img width="637" alt="image"
src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/00716679-b43a-4794-8499-9bfecdb4b78b">

## Test results
**tests/test_visualization/test_local_visualizer.py** test
results:(MMSegmentation/tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png)
<img width="643" alt="image"
src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6792b7d2-2512-4ea9-8500-1a7ed2d5e0dc">

**demo/inference_demo.ipynb** test results:
<img width="966" alt="image"
src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/dfc0147e-fb1a-490a-b6ff-a8b209352d9b">

-----
## Drawbacks
config opencv thickness according to image size
<img width="496" alt="image"
src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/0a54d72c-62b1-422c-89ae-69dc753fe0fc">

I have no idea of dealing with label overlapping for the time being
  • Loading branch information
CastleDream authored Aug 1, 2023
1 parent 30a3f94 commit 887ae9f
Show file tree
Hide file tree
Showing 3 changed files with 87 additions and 12 deletions.
8 changes: 7 additions & 1 deletion mmseg/apis/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,7 @@ def show_result_pyplot(model: BaseSegmentor,
draw_pred: bool = True,
wait_time: float = 0,
show: bool = True,
withLabels: Optional[bool] = True,
save_dir=None,
out_file=None):
"""Visualize the segmentation results on the image.
Expand All @@ -177,10 +178,14 @@ def show_result_pyplot(model: BaseSegmentor,
that means "forever". Defaults to 0.
show (bool): Whether to display the drawn image.
Default to True.
withLabels(bool, optional): Add semantic labels in visualization
result, Default to True.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
out_file (str, optional): Path to output file. Default to None.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
Expand Down Expand Up @@ -208,7 +213,8 @@ def show_result_pyplot(model: BaseSegmentor,
draw_pred=draw_pred,
wait_time=wait_time,
out_file=out_file,
show=show)
show=show,
withLabels=withLabels)
vis_img = visualizer.get_image()

return vis_img
6 changes: 4 additions & 2 deletions mmseg/utils/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
# yapf: disable
from .class_names import (ade_classes, ade_palette, cityscapes_classes,
from .class_names import (ade_classes, ade_palette, bdd100k_classes,
bdd100k_palette, cityscapes_classes,
cityscapes_palette, cocostuff_classes,
cocostuff_palette, dataset_aliases, get_classes,
get_palette, isaid_classes, isaid_palette,
Expand All @@ -27,5 +28,6 @@
'cityscapes_palette', 'ade_palette', 'voc_palette', 'cocostuff_palette',
'loveda_palette', 'potsdam_palette', 'vaihingen_palette', 'isaid_palette',
'stare_palette', 'dataset_aliases', 'get_classes', 'get_palette',
'datafrombytes', 'synapse_palette', 'synapse_classes'
'datafrombytes', 'synapse_palette', 'synapse_classes', 'bdd100k_classes',
'bdd100k_palette'
]
85 changes: 76 additions & 9 deletions mmseg/visualization/local_visualizer.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional

import cv2
import mmcv
import numpy as np
import torch
from mmengine.dist import master_only
from mmengine.structures import PixelData
from mmengine.visualization import Visualizer
Expand Down Expand Up @@ -42,8 +44,8 @@ class SegLocalVisualizer(Visualizer):
>>> import numpy as np
>>> import torch
>>> from mmengine.structures import PixelData
>>> from mmseg.data import SegDataSample
>>> from mmseg.engine.visualization import SegLocalVisualizer
>>> from mmseg.structures import SegDataSample
>>> from mmseg.visualization import SegLocalVisualizer
>>> seg_local_visualizer = SegLocalVisualizer()
>>> image = np.random.randint(0, 256,
Expand All @@ -60,7 +62,7 @@ class SegLocalVisualizer(Visualizer):
>>> seg_local_visualizer.add_datasample(
... 'visualizer_example', image,
... gt_seg_data_sample, show=True)
""" # noqa
""" # noqa

def __init__(self,
name: str = 'visualizer',
Expand All @@ -76,9 +78,32 @@ def __init__(self,
self.alpha: float = alpha
self.set_dataset_meta(palette, classes, dataset_name)

def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
def _get_center_loc(self, mask: np.ndarray) -> np.ndarray:
"""Get semantic seg center coordinate.
Args:
mask: np.ndarray: get from sem_seg
"""
loc = np.argwhere(mask == 1)

loc_sort = np.array(
sorted(loc.tolist(), key=lambda row: (row[0], row[1])))
y_list = loc_sort[:, 0]
unique, indices, counts = np.unique(
y_list, return_index=True, return_counts=True)
y_loc = unique[counts.argmax()]
y_most_freq_loc = loc[loc_sort[:, 0] == y_loc]
center_num = len(y_most_freq_loc) // 2
x = y_most_freq_loc[center_num][1]
y = y_most_freq_loc[center_num][0]
return np.array([x, y])

def _draw_sem_seg(self,
image: np.ndarray,
sem_seg: PixelData,
classes: Optional[List],
palette: Optional[List]) -> np.ndarray:
palette: Optional[List],
withLabels: Optional[bool] = True) -> np.ndarray:
"""Draw semantic seg of GT or prediction.
Args:
Expand All @@ -94,6 +119,8 @@ def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
palette (list, optional): Input palette for result rendering, which
is a list of color palette responding to the classes.
Defaults to None.
withLabels(bool, optional): Add semantic labels in visualization
result, Default to True.
Returns:
np.ndarray: the drawn image which channel is RGB.
Expand All @@ -112,6 +139,43 @@ def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
for label, color in zip(labels, colors):
mask[sem_seg[0] == label, :] = color

if withLabels:
font = cv2.FONT_HERSHEY_SIMPLEX
# (0,1] to change the size of the text relative to the image
scale = 0.05
fontScale = min(image.shape[0], image.shape[1]) / (25 / scale)
fontColor = (255, 255, 255)
if image.shape[0] < 300 or image.shape[1] < 300:
thickness = 1
rectangleThickness = 1
else:
thickness = 2
rectangleThickness = 2
lineType = 2

if isinstance(sem_seg[0], torch.Tensor):
masks = sem_seg[0].numpy() == labels[:, None, None]
else:
masks = sem_seg[0] == labels[:, None, None]
masks = masks.astype(np.uint8)
for mask_num in range(len(labels)):
classes_id = labels[mask_num]
classes_color = colors[mask_num]
loc = self._get_center_loc(masks[mask_num])
text = classes[classes_id]
(label_width, label_height), baseline = cv2.getTextSize(
text, font, fontScale, thickness)
mask = cv2.rectangle(mask, loc,
(loc[0] + label_width + baseline,
loc[1] + label_height + baseline),
classes_color, -1)
mask = cv2.rectangle(mask, loc,
(loc[0] + label_width + baseline,
loc[1] + label_height + baseline),
(0, 0, 0), rectangleThickness)
mask = cv2.putText(mask, text, (loc[0], loc[1] + label_height),
font, fontScale, fontColor, thickness,
lineType)
color_seg = (image * (1 - self.alpha) + mask * self.alpha).astype(
np.uint8)
self.set_image(color_seg)
Expand All @@ -137,7 +201,7 @@ def set_dataset_meta(self,
visulizer will use the meta information of the dataset i.e.
classes and palette, but the `classes` and `palette` have
higher priority. Defaults to None.
""" # noqa
""" # noqa
# Set default value. When calling
# `SegLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
Expand All @@ -161,7 +225,8 @@ def add_datasample(
wait_time: float = 0,
# TODO: Supported in mmengine's Viusalizer.
out_file: Optional[str] = None,
step: int = 0) -> None:
step: int = 0,
withLabels: Optional[bool] = True) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
Expand All @@ -187,6 +252,8 @@ def add_datasample(
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
step (int): Global step value to record. Defaults to 0.
withLabels(bool, optional): Add semantic labels in visualization
result, Defaults to True.
"""
classes = self.dataset_meta.get('classes', None)
palette = self.dataset_meta.get('palette', None)
Expand All @@ -202,7 +269,7 @@ def add_datasample(
'segmentation results.'
gt_img_data = self._draw_sem_seg(gt_img_data,
data_sample.gt_sem_seg, classes,
palette)
palette, withLabels)

if (draw_pred and data_sample is not None
and 'pred_sem_seg' in data_sample):
Expand All @@ -213,7 +280,7 @@ def add_datasample(
'segmentation results.'
pred_img_data = self._draw_sem_seg(pred_img_data,
data_sample.pred_sem_seg,
classes, palette)
classes, palette, withLabels)

if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
Expand Down

0 comments on commit 887ae9f

Please sign in to comment.