I acknowledge that this work is part of the credited course group project on Reinforcement learning I at the University of Alberta.
Group Member:
a) Animesh Kumar Paul animeshk@ualberta.ca
b) Videh Raj Nema nema@ualberta.ca
Run codes one of the following ways:
python 3_run_mc_colab.py --exp experiment_name --algo dqn --replay_frequency 2 --learning_rate 0.1 --console_output 0 --use_gpu 0 --is_mac 0 --run_start 1
start = 1
max_runs = start + 1
python 3_run_mc_colab.py --exp experiment_name --algo dqn --replay_frequency 2 --learning_rate 0.1 --console_output 0 --use_gpu 0 --is_mac 0 --max_runs max_runs --run_start start
Option 3: Execute each run seperately automatically (Sequentially execute each run) -You need to set the hyper-paramters in 2_easy_run_sequentially.py file.
python 2_easy_run_sequentially.py
Option 4: Execute each run seperately automatically (Parallelly execute each run)-You need to set the hyper-paramters in 2_easy_run_parallel_backgroun.py file.
python 2_easy_run_parallel_background.sh
It contains also two jupyter notebooks for plotting purposes.