forked from modin-project/modin
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
FEAT-modin-project#2447: add docker file for census on omnisci
Signed-off-by: Anatoly Myachev <anatoly.myachev@intel.com>
- Loading branch information
Showing
3 changed files
with
238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
#!/bin/bash -e | ||
|
||
# Licensed to Modin Development Team under one or more contributor license agreements. | ||
# See the NOTICE file distributed with this work for additional information regarding | ||
# copyright ownership. The Modin Development Team licenses this file to you under the | ||
# Apache License, Version 2.0 (the "License"); you may not use this file except in | ||
# compliance with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software distributed under | ||
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific language | ||
# governing permissions and limitations under the License. | ||
|
||
cd "`dirname \"$0\"`" | ||
|
||
docker build -f census-omnisci.dockerfile -t census-omnisci --build-arg https_proxy --build-arg http_proxy . | ||
printf "\n\nTo run the benchmark execute:\n\tdocker run --rm census-omnisci\n" |
57 changes: 57 additions & 0 deletions
57
examples/docker/census-on-omnisci/census-omnisci.dockerfile
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# Licensed to Modin Development Team under one or more contributor license agreements. | ||
# See the NOTICE file distributed with this work for additional information regarding | ||
# copyright ownership. The Modin Development Team licenses this file to you under the | ||
# Apache License, Version 2.0 (the "License"); you may not use this file except in | ||
# compliance with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software distributed under | ||
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific language | ||
# governing permissions and limitations under the License. | ||
|
||
FROM ubuntu:18.04 | ||
ENV http_proxy ${http_proxy} | ||
ENV https_proxy ${https_proxy} | ||
ENV MODIN_BACKEND "omnisci" | ||
ENV MODIN_EXPERIMENTAL "true" | ||
|
||
RUN apt-get update --yes \ | ||
&& apt-get install wget --yes && \ | ||
rm -rf /var/lib/apt/lists/* | ||
|
||
ENV USER modin | ||
ENV UID 1000 | ||
ENV HOME /home/$USER | ||
|
||
RUN adduser --disabled-password \ | ||
--gecos "Non-root user" \ | ||
--uid $UID \ | ||
--home $HOME \ | ||
$USER | ||
|
||
ENV CONDA_DIR ${HOME}/miniconda | ||
|
||
SHELL ["/bin/bash", "--login", "-c"] | ||
|
||
RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O /tmp/miniconda3.sh && \ | ||
bash /tmp/miniconda3.sh -b -p "${CONDA_DIR}" -f -u && \ | ||
"${CONDA_DIR}/bin/conda" init bash && \ | ||
rm -f /tmp/miniconda3.sh && \ | ||
echo ". '${CONDA_DIR}/etc/profile.d/conda.sh'" >> "${HOME}/.profile" | ||
|
||
RUN conda update -n base -c defaults conda -y && \ | ||
conda create -n modin --yes --no-default-packages && \ | ||
conda activate modin && \ | ||
conda install -c intel/label/modin -c conda-forge modin "ray>=1.0.0" && \ | ||
conda install -c intel/label/modin -c conda-forge -c intel -c intel/label/oneapibeta daal4py dpcpp_cpp_rt && \ | ||
conda install -c conda-forge scikit-learn && \ | ||
conda clean --all --yes | ||
|
||
RUN wget https://rapidsai-data.s3.us-east-2.amazonaws.com/datasets/ipums_education2income_1970-2010.csv.gz \ | ||
-O "${HOME}/ipums_education2income_1970-2010.csv.gz" | ||
|
||
COPY census-omnisci.py "${HOME}/census-omnisci.py" | ||
|
||
CMD ["/bin/bash", "--login", "-c", "conda activate modin && python ${HOME}/census-omnisci.py"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
# Licensed to Modin Development Team under one or more contributor license agreements. | ||
# See the NOTICE file distributed with this work for additional information regarding | ||
# copyright ownership. The Modin Development Team licenses this file to you under the | ||
# Apache License, Version 2.0 (the "License"); you may not use this file except in | ||
# compliance with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software distributed under | ||
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific language | ||
# governing permissions and limitations under the License. | ||
|
||
import os | ||
import time | ||
import modin.pandas as pd | ||
from modin.experimental.engines.omnisci_on_ray.frame.omnisci_worker import OmnisciServer | ||
|
||
from sklearn import config_context | ||
import daal4py.sklearn as sklearn | ||
|
||
sklearn.patch_sklearn() | ||
from sklearn.model_selection import train_test_split | ||
import sklearn.linear_model as lm | ||
import numpy as np | ||
|
||
|
||
def read(): | ||
columns_names = [ | ||
"YEAR0", "DATANUM", "SERIAL", "CBSERIAL", "HHWT", "CPI99", "GQ", "QGQ", "PERNUM", "PERWT", "SEX", | ||
"AGE", "EDUC", "EDUCD", "INCTOT", "SEX_HEAD", "SEX_MOM", "SEX_POP", "SEX_SP", "SEX_MOM2", "SEX_POP2", | ||
"AGE_HEAD", "AGE_MOM", "AGE_POP", "AGE_SP", "AGE_MOM2", "AGE_POP2", "EDUC_HEAD", "EDUC_MOM", "EDUC_POP", | ||
"EDUC_SP", "EDUC_MOM2", "EDUC_POP2", "EDUCD_HEAD", "EDUCD_MOM", "EDUCD_POP", "EDUCD_SP", "EDUCD_MOM2", | ||
"EDUCD_POP2", "INCTOT_HEAD", "INCTOT_MOM", "INCTOT_POP", "INCTOT_SP", "INCTOT_MOM2", "INCTOT_POP2", | ||
] | ||
columns_types = [ | ||
"int64", "int64", "int64", "float64", "int64", "float64", "int64", "float64", "int64", "int64", | ||
"int64", "int64", "int64", "int64", "int64", "float64", "float64", "float64", "float64", "float64", | ||
"float64", "float64", "float64", "float64", "float64", "float64", "float64", "float64", "float64", | ||
"float64", "float64", "float64", "float64", "float64", "float64", "float64", "float64", "float64", | ||
"float64", "float64", "float64", "float64", "float64", "float64", "float64", | ||
] | ||
dtypes = {columns_names[i]: columns_types[i] for i in range(len(columns_names))} | ||
|
||
df = pd.read_csv( | ||
os.path.expanduser('~/ipums_education2income_1970-2010.csv.gz'), | ||
names=columns_names, | ||
dtype=dtypes, | ||
skiprows=1, | ||
) | ||
|
||
df.shape | ||
df._query_compiler._modin_frame._partitions[0][ | ||
0 | ||
].frame_id = OmnisciServer().put_arrow_to_omnisci( | ||
df._query_compiler._modin_frame._partitions[0][0].get() | ||
) | ||
return df | ||
|
||
|
||
def etl(df): | ||
keep_cols = [ | ||
"YEAR0", "DATANUM", "SERIAL", "CBSERIAL", "HHWT", "CPI99", "GQ", "PERNUM", "SEX", "AGE", | ||
"INCTOT", "EDUC", "EDUCD", "EDUC_HEAD", "EDUC_POP", "EDUC_MOM", "EDUCD_MOM2", "EDUCD_POP2", | ||
"INCTOT_MOM", "INCTOT_POP", "INCTOT_MOM2", "INCTOT_POP2", "INCTOT_HEAD", "SEX_HEAD", | ||
] | ||
df = df[keep_cols] | ||
|
||
df = df[df["INCTOT"] != 9999999] | ||
df = df[df["EDUC"] != -1] | ||
df = df[df["EDUCD"] != -1] | ||
|
||
df["INCTOT"] = df["INCTOT"] * df["CPI99"] | ||
|
||
for column in keep_cols: | ||
df[column] = df[column].fillna(-1) | ||
|
||
df[column] = df[column].astype("float64") | ||
|
||
y = df["EDUC"] | ||
X = df.drop(columns=["EDUC", "CPI99"]) | ||
|
||
# trigger computation | ||
df.shape | ||
y.shape | ||
X.shape | ||
|
||
return (df, X, y) | ||
|
||
|
||
def mse(y_test, y_pred): | ||
return ((y_test - y_pred) ** 2).mean() | ||
|
||
|
||
def cod(y_test, y_pred): | ||
y_bar = y_test.mean() | ||
total = ((y_test - y_bar) ** 2).sum() | ||
residuals = ((y_test - y_pred) ** 2).sum() | ||
return 1 - (residuals / total) | ||
|
||
|
||
def ml(X, y, random_state, n_runs, test_size): | ||
clf = lm.Ridge() | ||
|
||
X = np.ascontiguousarray(X, dtype=np.float64) | ||
y = np.ascontiguousarray(y, dtype=np.float64) | ||
|
||
mse_values, cod_values = [], [] | ||
ml_scores = {} | ||
|
||
print("ML runs: ", n_runs) | ||
for i in range(n_runs): | ||
(X_train, X_test, y_train, y_test) = train_test_split( | ||
X, y, test_size=test_size, random_state=random_state | ||
) | ||
random_state += 777 | ||
|
||
with config_context(assume_finite=True): | ||
model = clf.fit(X_train, y_train) | ||
|
||
y_pred = model.predict(X_test) | ||
|
||
mse_values.append(mse(y_test, y_pred)) | ||
cod_values.append(cod(y_test, y_pred)) | ||
|
||
ml_scores["mse_mean"] = sum(mse_values) / len(mse_values) | ||
ml_scores["cod_mean"] = sum(cod_values) / len(cod_values) | ||
ml_scores["mse_dev"] = pow( | ||
sum([(mse_value - ml_scores["mse_mean"]) ** 2 for mse_value in mse_values]) | ||
/ (len(mse_values) - 1), | ||
0.5, | ||
) | ||
ml_scores["cod_dev"] = pow( | ||
sum([(cod_value - ml_scores["cod_mean"]) ** 2 for cod_value in cod_values]) | ||
/ (len(cod_values) - 1), | ||
0.5, | ||
) | ||
|
||
return ml_scores | ||
|
||
|
||
def measure(name, func, *args, **kw): | ||
t0 = time.time() | ||
res = func(*args, **kw) | ||
t1 = time.time() | ||
print(f'{name}: {t1 - t0} sec') | ||
return res | ||
|
||
|
||
def main(): | ||
# ML specific | ||
N_RUNS = 50 | ||
TEST_SIZE = 0.1 | ||
RANDOM_STATE = 777 | ||
|
||
df = measure('Reading', read) | ||
_, X, y = measure('ETL', etl, df) | ||
measure('ML', ml, X, y, random_state=RANDOM_STATE, n_runs=N_RUNS, test_size=TEST_SIZE) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |