Skip to content

Commit

Permalink
feat: correlation support (#456)
Browse files Browse the repository at this point in the history
* feat: correlation support

* fmt

* remove un-used import

* address comments

* address comment

---------

Co-authored-by: Huaxin Gao <huaxin.gao@apple.com>
  • Loading branch information
huaxingao and Huaxin Gao authored May 23, 2024
1 parent 7b0a7e0 commit 6d23e28
Show file tree
Hide file tree
Showing 7 changed files with 452 additions and 1 deletion.
256 changes: 256 additions & 0 deletions core/src/execution/datafusion/expressions/correlation.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::compute::{and, filter, is_not_null};

use std::{any::Any, sync::Arc};

use crate::execution::datafusion::expressions::{
covariance::CovarianceAccumulator, stats::StatsType, stddev::StddevAccumulator,
utils::down_cast_any_ref,
};
use arrow::{
array::ArrayRef,
datatypes::{DataType, Field},
};
use datafusion::logical_expr::Accumulator;
use datafusion_common::{Result, ScalarValue};
use datafusion_physical_expr::{expressions::format_state_name, AggregateExpr, PhysicalExpr};

/// CORR aggregate expression
/// The implementation mostly is the same as the DataFusion's implementation. The reason
/// we have our own implementation is that DataFusion has UInt64 for state_field `count`,
/// while Spark has Double for count. Also we have added `null_on_divide_by_zero`
/// to be consistent with Spark's implementation.
#[derive(Debug)]
pub struct Correlation {
name: String,
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
null_on_divide_by_zero: bool,
}

impl Correlation {
pub fn new(
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
null_on_divide_by_zero: bool,
) -> Self {
// the result of correlation just support FLOAT64 data type.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
expr1,
expr2,
null_on_divide_by_zero,
}
}
}

impl AggregateExpr for Correlation {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, DataType::Float64, true))
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CorrelationAccumulator::try_new(
self.null_on_divide_by_zero,
)?))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean2"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "algo_const"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "m2_1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "m2_2"),
DataType::Float64,
true,
),
])
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr1.clone(), self.expr2.clone()]
}

fn name(&self) -> &str {
&self.name
}
}

impl PartialEq<dyn Any> for Correlation {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.expr1.eq(&x.expr1)
&& self.expr2.eq(&x.expr2)
&& self.null_on_divide_by_zero == x.null_on_divide_by_zero
})
.unwrap_or(false)
}
}

/// An accumulator to compute correlation
#[derive(Debug)]
pub struct CorrelationAccumulator {
covar: CovarianceAccumulator,
stddev1: StddevAccumulator,
stddev2: StddevAccumulator,
null_on_divide_by_zero: bool,
}

impl CorrelationAccumulator {
/// Creates a new `CorrelationAccumulator`
pub fn try_new(null_on_divide_by_zero: bool) -> Result<Self> {
Ok(Self {
covar: CovarianceAccumulator::try_new(StatsType::Population)?,
stddev1: StddevAccumulator::try_new(StatsType::Population, null_on_divide_by_zero)?,
stddev2: StddevAccumulator::try_new(StatsType::Population, null_on_divide_by_zero)?,
null_on_divide_by_zero,
})
}
}

impl Accumulator for CorrelationAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.covar.get_count()),
ScalarValue::from(self.covar.get_mean1()),
ScalarValue::from(self.covar.get_mean2()),
ScalarValue::from(self.covar.get_algo_const()),
ScalarValue::from(self.stddev1.get_m2()),
ScalarValue::from(self.stddev2.get_m2()),
])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = if values[0].null_count() != 0 || values[1].null_count() != 0 {
let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?;
let values1 = filter(&values[0], &mask)?;
let values2 = filter(&values[1], &mask)?;

vec![values1, values2]
} else {
values.to_vec()
};

if !values[0].is_empty() && !values[1].is_empty() {
self.covar.update_batch(&values)?;
self.stddev1.update_batch(&values[0..1])?;
self.stddev2.update_batch(&values[1..2])?;
}

Ok(())
}

fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = if values[0].null_count() != 0 || values[1].null_count() != 0 {
let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?;
let values1 = filter(&values[0], &mask)?;
let values2 = filter(&values[1], &mask)?;

vec![values1, values2]
} else {
values.to_vec()
};

self.covar.retract_batch(&values)?;
self.stddev1.retract_batch(&values[0..1])?;
self.stddev2.retract_batch(&values[1..2])?;
Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let states_c = [
states[0].clone(),
states[1].clone(),
states[2].clone(),
states[3].clone(),
];
let states_s1 = [states[0].clone(), states[1].clone(), states[4].clone()];
let states_s2 = [states[0].clone(), states[2].clone(), states[5].clone()];

if states[0].len() > 0 && states[1].len() > 0 && states[2].len() > 0 {
self.covar.merge_batch(&states_c)?;
self.stddev1.merge_batch(&states_s1)?;
self.stddev2.merge_batch(&states_s2)?;
}
Ok(())
}

fn evaluate(&mut self) -> Result<ScalarValue> {
let covar = self.covar.evaluate()?;
let stddev1 = self.stddev1.evaluate()?;
let stddev2 = self.stddev2.evaluate()?;

match (covar, stddev1, stddev2) {
(
ScalarValue::Float64(Some(c)),
ScalarValue::Float64(Some(s1)),
ScalarValue::Float64(Some(s2)),
) if s1 != 0.0 && s2 != 0.0 => Ok(ScalarValue::Float64(Some(c / (s1 * s2)))),
_ if self.null_on_divide_by_zero => Ok(ScalarValue::Float64(None)),
_ => {
if self.covar.get_count() == 1.0 {
return Ok(ScalarValue::Float64(Some(f64::NAN)));
}
Ok(ScalarValue::Float64(None))
}
}
}

fn size(&self) -> usize {
std::mem::size_of_val(self) - std::mem::size_of_val(&self.covar) + self.covar.size()
- std::mem::size_of_val(&self.stddev1)
+ self.stddev1.size()
- std::mem::size_of_val(&self.stddev2)
+ self.stddev2.size()
}
}
1 change: 1 addition & 0 deletions core/src/execution/datafusion/expressions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ pub use normalize_nan::NormalizeNaNAndZero;
pub mod avg;
pub mod avg_decimal;
pub mod bloom_filter_might_contain;
pub mod correlation;
pub mod covariance;
pub mod stats;
pub mod stddev;
Expand Down
13 changes: 13 additions & 0 deletions core/src/execution/datafusion/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@ use crate::{
bloom_filter_might_contain::BloomFilterMightContain,
cast::{Cast, EvalMode},
checkoverflow::CheckOverflow,
correlation::Correlation,
covariance::Covariance,
if_expr::IfExpr,
scalar_funcs::create_comet_physical_fun,
Expand Down Expand Up @@ -1310,6 +1311,18 @@ impl PhysicalPlanner {
))),
}
}
AggExprStruct::Correlation(expr) => {
let child1 = self.create_expr(expr.child1.as_ref().unwrap(), schema.clone())?;
let child2 = self.create_expr(expr.child2.as_ref().unwrap(), schema.clone())?;
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(Correlation::new(
child1,
child2,
"correlation",
datatype,
expr.null_on_divide_by_zero,
)))
}
}
}

Expand Down
8 changes: 8 additions & 0 deletions core/src/execution/proto/expr.proto
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@ message AggExpr {
CovPopulation covPopulation = 13;
Variance variance = 14;
Stddev stddev = 15;
Correlation correlation = 16;
}
}

Expand Down Expand Up @@ -186,6 +187,13 @@ message Stddev {
StatisticsType stats_type = 4;
}

message Correlation {
Expr child1 = 1;
Expr child2 = 2;
bool null_on_divide_by_zero = 3;
DataType datatype = 4;
}

message Literal {
oneof value {
bool bool_val = 1;
Expand Down
1 change: 1 addition & 0 deletions docs/source/user-guide/expressions.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,3 +109,4 @@ The following Spark expressions are currently available:
- VarianceSamp
- StddevPop
- StddevSamp
- Corr
23 changes: 22 additions & 1 deletion spark/src/main/scala/org/apache/comet/serde/QueryPlanSerde.scala
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ import scala.collection.JavaConverters._

import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, Average, BitAndAgg, BitOrAgg, BitXorAgg, Count, CovPopulation, CovSample, Final, First, Last, Max, Min, Partial, StddevPop, StddevSamp, Sum, VariancePop, VarianceSamp}
import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, Average, BitAndAgg, BitOrAgg, BitXorAgg, Corr, Count, CovPopulation, CovSample, Final, First, Last, Max, Min, Partial, StddevPop, StddevSamp, Sum, VariancePop, VarianceSamp}
import org.apache.spark.sql.catalyst.expressions.objects.StaticInvoke
import org.apache.spark.sql.catalyst.optimizer.{BuildRight, NormalizeNaNAndZero}
import org.apache.spark.sql.catalyst.plans._
Expand Down Expand Up @@ -547,6 +547,27 @@ object QueryPlanSerde extends Logging with ShimQueryPlanSerde with CometExprShim
withInfo(aggExpr, child)
None
}
case corr @ Corr(child1, child2, nullOnDivideByZero) =>
val child1Expr = exprToProto(child1, inputs, binding)
val child2Expr = exprToProto(child2, inputs, binding)
val dataType = serializeDataType(corr.dataType)

if (child1Expr.isDefined && child2Expr.isDefined && dataType.isDefined) {
val corrBuilder = ExprOuterClass.Correlation.newBuilder()
corrBuilder.setChild1(child1Expr.get)
corrBuilder.setChild2(child2Expr.get)
corrBuilder.setNullOnDivideByZero(nullOnDivideByZero)
corrBuilder.setDatatype(dataType.get)

Some(
ExprOuterClass.AggExpr
.newBuilder()
.setCorrelation(corrBuilder)
.build())
} else {
withInfo(aggExpr, child1, child2)
None
}
case fn =>
val msg = s"unsupported Spark aggregate function: ${fn.prettyName}"
emitWarning(msg)
Expand Down
Loading

0 comments on commit 6d23e28

Please sign in to comment.