-
Notifications
You must be signed in to change notification settings - Fork 169
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat: correlation support * fmt * remove un-used import * address comments * address comment --------- Co-authored-by: Huaxin Gao <huaxin.gao@apple.com>
- Loading branch information
Showing
7 changed files
with
452 additions
and
1 deletion.
There are no files selected for viewing
256 changes: 256 additions & 0 deletions
256
core/src/execution/datafusion/expressions/correlation.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use arrow::compute::{and, filter, is_not_null}; | ||
|
||
use std::{any::Any, sync::Arc}; | ||
|
||
use crate::execution::datafusion::expressions::{ | ||
covariance::CovarianceAccumulator, stats::StatsType, stddev::StddevAccumulator, | ||
utils::down_cast_any_ref, | ||
}; | ||
use arrow::{ | ||
array::ArrayRef, | ||
datatypes::{DataType, Field}, | ||
}; | ||
use datafusion::logical_expr::Accumulator; | ||
use datafusion_common::{Result, ScalarValue}; | ||
use datafusion_physical_expr::{expressions::format_state_name, AggregateExpr, PhysicalExpr}; | ||
|
||
/// CORR aggregate expression | ||
/// The implementation mostly is the same as the DataFusion's implementation. The reason | ||
/// we have our own implementation is that DataFusion has UInt64 for state_field `count`, | ||
/// while Spark has Double for count. Also we have added `null_on_divide_by_zero` | ||
/// to be consistent with Spark's implementation. | ||
#[derive(Debug)] | ||
pub struct Correlation { | ||
name: String, | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl Correlation { | ||
pub fn new( | ||
expr1: Arc<dyn PhysicalExpr>, | ||
expr2: Arc<dyn PhysicalExpr>, | ||
name: impl Into<String>, | ||
data_type: DataType, | ||
null_on_divide_by_zero: bool, | ||
) -> Self { | ||
// the result of correlation just support FLOAT64 data type. | ||
assert!(matches!(data_type, DataType::Float64)); | ||
Self { | ||
name: name.into(), | ||
expr1, | ||
expr2, | ||
null_on_divide_by_zero, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for Correlation { | ||
/// Return a reference to Any that can be used for downcasting | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, DataType::Float64, true)) | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(CorrelationAccumulator::try_new( | ||
self.null_on_divide_by_zero, | ||
)?)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new( | ||
format_state_name(&self.name, "count"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean1"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean2"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "algo_const"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "m2_1"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "m2_2"), | ||
DataType::Float64, | ||
true, | ||
), | ||
]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
vec![self.expr1.clone(), self.expr2.clone()] | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
} | ||
|
||
impl PartialEq<dyn Any> for Correlation { | ||
fn eq(&self, other: &dyn Any) -> bool { | ||
down_cast_any_ref(other) | ||
.downcast_ref::<Self>() | ||
.map(|x| { | ||
self.name == x.name | ||
&& self.expr1.eq(&x.expr1) | ||
&& self.expr2.eq(&x.expr2) | ||
&& self.null_on_divide_by_zero == x.null_on_divide_by_zero | ||
}) | ||
.unwrap_or(false) | ||
} | ||
} | ||
|
||
/// An accumulator to compute correlation | ||
#[derive(Debug)] | ||
pub struct CorrelationAccumulator { | ||
covar: CovarianceAccumulator, | ||
stddev1: StddevAccumulator, | ||
stddev2: StddevAccumulator, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl CorrelationAccumulator { | ||
/// Creates a new `CorrelationAccumulator` | ||
pub fn try_new(null_on_divide_by_zero: bool) -> Result<Self> { | ||
Ok(Self { | ||
covar: CovarianceAccumulator::try_new(StatsType::Population)?, | ||
stddev1: StddevAccumulator::try_new(StatsType::Population, null_on_divide_by_zero)?, | ||
stddev2: StddevAccumulator::try_new(StatsType::Population, null_on_divide_by_zero)?, | ||
null_on_divide_by_zero, | ||
}) | ||
} | ||
} | ||
|
||
impl Accumulator for CorrelationAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.covar.get_count()), | ||
ScalarValue::from(self.covar.get_mean1()), | ||
ScalarValue::from(self.covar.get_mean2()), | ||
ScalarValue::from(self.covar.get_algo_const()), | ||
ScalarValue::from(self.stddev1.get_m2()), | ||
ScalarValue::from(self.stddev2.get_m2()), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = if values[0].null_count() != 0 || values[1].null_count() != 0 { | ||
let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?; | ||
let values1 = filter(&values[0], &mask)?; | ||
let values2 = filter(&values[1], &mask)?; | ||
|
||
vec![values1, values2] | ||
} else { | ||
values.to_vec() | ||
}; | ||
|
||
if !values[0].is_empty() && !values[1].is_empty() { | ||
self.covar.update_batch(&values)?; | ||
self.stddev1.update_batch(&values[0..1])?; | ||
self.stddev2.update_batch(&values[1..2])?; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = if values[0].null_count() != 0 || values[1].null_count() != 0 { | ||
let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?; | ||
let values1 = filter(&values[0], &mask)?; | ||
let values2 = filter(&values[1], &mask)?; | ||
|
||
vec![values1, values2] | ||
} else { | ||
values.to_vec() | ||
}; | ||
|
||
self.covar.retract_batch(&values)?; | ||
self.stddev1.retract_batch(&values[0..1])?; | ||
self.stddev2.retract_batch(&values[1..2])?; | ||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let states_c = [ | ||
states[0].clone(), | ||
states[1].clone(), | ||
states[2].clone(), | ||
states[3].clone(), | ||
]; | ||
let states_s1 = [states[0].clone(), states[1].clone(), states[4].clone()]; | ||
let states_s2 = [states[0].clone(), states[2].clone(), states[5].clone()]; | ||
|
||
if states[0].len() > 0 && states[1].len() > 0 && states[2].len() > 0 { | ||
self.covar.merge_batch(&states_c)?; | ||
self.stddev1.merge_batch(&states_s1)?; | ||
self.stddev2.merge_batch(&states_s2)?; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let covar = self.covar.evaluate()?; | ||
let stddev1 = self.stddev1.evaluate()?; | ||
let stddev2 = self.stddev2.evaluate()?; | ||
|
||
match (covar, stddev1, stddev2) { | ||
( | ||
ScalarValue::Float64(Some(c)), | ||
ScalarValue::Float64(Some(s1)), | ||
ScalarValue::Float64(Some(s2)), | ||
) if s1 != 0.0 && s2 != 0.0 => Ok(ScalarValue::Float64(Some(c / (s1 * s2)))), | ||
_ if self.null_on_divide_by_zero => Ok(ScalarValue::Float64(None)), | ||
_ => { | ||
if self.covar.get_count() == 1.0 { | ||
return Ok(ScalarValue::Float64(Some(f64::NAN))); | ||
} | ||
Ok(ScalarValue::Float64(None)) | ||
} | ||
} | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) - std::mem::size_of_val(&self.covar) + self.covar.size() | ||
- std::mem::size_of_val(&self.stddev1) | ||
+ self.stddev1.size() | ||
- std::mem::size_of_val(&self.stddev2) | ||
+ self.stddev2.size() | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -109,3 +109,4 @@ The following Spark expressions are currently available: | |
- VarianceSamp | ||
- StddevPop | ||
- StddevSamp | ||
- Corr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.