Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Fallback to Spark for unsupported partitioning #759

Merged
merged 4 commits into from
Aug 2, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ class CometSparkSessionExtensions
case s: ShuffleExchangeExec
if (!s.child.supportsColumnar || isCometPlan(s.child)) && isCometJVMShuffleMode(
conf) &&
QueryPlanSerde.supportPartitioningTypes(s.child.output)._1 &&
QueryPlanSerde.supportPartitioningTypes(s.child.output, s.outputPartitioning)._1 &&
!isShuffleOperator(s.child) =>
logInfo("Comet extension enabled for JVM Columnar Shuffle")
CometShuffleExchangeExec(s, shuffleType = CometColumnarShuffle)
Expand Down Expand Up @@ -769,7 +769,7 @@ class CometSparkSessionExtensions
// convert it to CometColumnarShuffle,
case s: ShuffleExchangeExec
if isCometShuffleEnabled(conf) && isCometJVMShuffleMode(conf) &&
QueryPlanSerde.supportPartitioningTypes(s.child.output)._1 &&
QueryPlanSerde.supportPartitioningTypes(s.child.output, s.outputPartitioning)._1 &&
!isShuffleOperator(s.child) =>
logInfo("Comet extension enabled for JVM Columnar Shuffle")

Expand All @@ -789,6 +789,7 @@ class CometSparkSessionExtensions

case s: ShuffleExchangeExec =>
val isShuffleEnabled = isCometShuffleEnabled(conf)
val outputPartitioning = s.outputPartitioning
val reason = getCometShuffleNotEnabledReason(conf).getOrElse("no reason available")
val msg1 = createMessage(!isShuffleEnabled, s"Comet shuffle is not enabled: $reason")
val columnarShuffleEnabled = isCometJVMShuffleMode(conf)
Expand All @@ -797,12 +798,13 @@ class CometSparkSessionExtensions
.supportPartitioning(s.child.output, s.outputPartitioning)
._1,
"Native shuffle: " +
s"${QueryPlanSerde.supportPartitioning(s.child.output, s.outputPartitioning)._2}")
s"${QueryPlanSerde.supportPartitioning(s.child.output, outputPartitioning)._2}")
val msg3 = createMessage(
isShuffleEnabled && columnarShuffleEnabled && !QueryPlanSerde
.supportPartitioningTypes(s.child.output)
.supportPartitioningTypes(s.child.output, s.outputPartitioning)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit s.outputPartitioning => outputPartitioning

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Okay.

._1,
s"JVM shuffle: ${QueryPlanSerde.supportPartitioningTypes(s.child.output)._2}")
"JVM shuffle: " +
s"${QueryPlanSerde.supportPartitioningTypes(s.child.output, outputPartitioning)._2}")
withInfo(s, Seq(msg1, msg2, msg3).flatten.mkString(","))
s

Expand Down
65 changes: 47 additions & 18 deletions spark/src/main/scala/org/apache/comet/serde/QueryPlanSerde.scala
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression,
import org.apache.spark.sql.catalyst.expressions.objects.StaticInvoke
import org.apache.spark.sql.catalyst.optimizer.{BuildLeft, BuildRight, NormalizeNaNAndZero}
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.physical.{HashPartitioning, Partitioning, SinglePartition}
import org.apache.spark.sql.catalyst.plans.physical.{HashPartitioning, Partitioning, RangePartitioning, RoundRobinPartitioning, SinglePartition}
import org.apache.spark.sql.catalyst.util.CharVarcharCodegenUtils
import org.apache.spark.sql.comet.{CometBroadcastExchangeExec, CometRowToColumnarExec, CometSinkPlaceHolder, DecimalPrecision}
import org.apache.spark.sql.comet.execution.shuffle.CometShuffleExchangeExec
Expand Down Expand Up @@ -2880,7 +2880,9 @@ object QueryPlanSerde extends Logging with ShimQueryPlanSerde with CometExprShim
* Check if the datatypes of shuffle input are supported. This is used for Columnar shuffle
* which supports struct/array.
*/
def supportPartitioningTypes(inputs: Seq[Attribute]): (Boolean, String) = {
def supportPartitioningTypes(
inputs: Seq[Attribute],
partitioning: Partitioning): (Boolean, String) = {
def supportedDataType(dt: DataType): Boolean = dt match {
case _: ByteType | _: ShortType | _: IntegerType | _: LongType | _: FloatType |
_: DoubleType | _: StringType | _: BinaryType | _: TimestampType | _: DecimalType |
Expand All @@ -2904,14 +2906,37 @@ object QueryPlanSerde extends Logging with ShimQueryPlanSerde with CometExprShim
false
}

// Check if the datatypes of shuffle input are supported.
var msg = ""
val supported = inputs.forall(attr => supportedDataType(attr.dataType))
val supported = partitioning match {
case HashPartitioning(expressions, _) =>
val supported =
expressions.map(QueryPlanSerde.exprToProto(_, inputs)).forall(_.isDefined) &&
expressions.forall(e => supportedDataType(e.dataType))
if (!supported) {
msg = s"unsupported Spark partitioning expressions: $expressions"
}
supported
case SinglePartition => true
case RoundRobinPartitioning(_) => true
case RangePartitioning(orderings, _) =>
val supported =
orderings.map(QueryPlanSerde.exprToProto(_, inputs)).forall(_.isDefined) &&
orderings.forall(e => supportedDataType(e.dataType))
if (!supported) {
msg = s"unsupported Spark partitioning expressions: $orderings"
}
supported
case _ =>
msg = s"unsupported Spark partitioning: ${partitioning.getClass.getName}"
false
}

if (!supported) {
msg = s"unsupported Spark partitioning: ${inputs.map(_.dataType)}"
emitWarning(msg)
(false, msg)
} else {
(true, null)
}
(supported, msg)
}

/**
Expand All @@ -2930,23 +2955,27 @@ object QueryPlanSerde extends Logging with ShimQueryPlanSerde with CometExprShim
false
}

// Check if the datatypes of shuffle input are supported.
val supported = inputs.forall(attr => supportedDataType(attr.dataType))
var msg = ""
val supported = partitioning match {
case HashPartitioning(expressions, _) =>
val supported =
expressions.map(QueryPlanSerde.exprToProto(_, inputs)).forall(_.isDefined) &&
expressions.forall(e => supportedDataType(e.dataType))
if (!supported) {
msg = s"unsupported Spark partitioning expressions: $expressions"
}
supported
case SinglePartition => true
case _ =>
msg = s"unsupported Spark partitioning: ${partitioning.getClass.getName}"
false
}

if (!supported) {
val msg = s"unsupported Spark partitioning: ${inputs.map(_.dataType)}"
emitWarning(msg)
(false, msg)
} else {
partitioning match {
case HashPartitioning(expressions, _) =>
(expressions.map(QueryPlanSerde.exprToProto(_, inputs)).forall(_.isDefined), null)
case SinglePartition => (true, null)
case other =>
val msg = s"unsupported Spark partitioning: ${other.getClass.getName}"
emitWarning(msg)
(false, msg)
}
(true, null)
}
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.comet.exec

import java.util.Collections

import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.connector.catalog.{Column, Identifier, InMemoryCatalog, InMemoryTableCatalog}
import org.apache.spark.sql.connector.expressions.Expressions.identity
import org.apache.spark.sql.connector.expressions.Transform
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{FloatType, LongType, StringType, TimestampType}

class CometShuffle4_0Suite extends CometColumnarShuffleSuite {
override protected val asyncShuffleEnable: Boolean = false

protected val adaptiveExecutionEnabled: Boolean = true

override def beforeAll(): Unit = {
super.beforeAll()
spark.conf.set("spark.sql.catalog.testcat", classOf[InMemoryCatalog].getName)
}

override def afterAll(): Unit = {
spark.sessionState.conf.unsetConf("spark.sql.catalog.testcat")
super.afterAll()
}

private val emptyProps: java.util.Map[String, String] = {
Collections.emptyMap[String, String]
}
private val items: String = "items"
private val itemsColumns: Array[Column] = Array(
Column.create("id", LongType),
Column.create("name", StringType),
Column.create("price", FloatType),
Column.create("arrive_time", TimestampType))

private val purchases: String = "purchases"
private val purchasesColumns: Array[Column] = Array(
Column.create("item_id", LongType),
Column.create("price", FloatType),
Column.create("time", TimestampType))

protected def catalog: InMemoryCatalog = {
val catalog = spark.sessionState.catalogManager.catalog("testcat")
catalog.asInstanceOf[InMemoryCatalog]
}

private def createTable(
table: String,
columns: Array[Column],
partitions: Array[Transform],
catalog: InMemoryTableCatalog = catalog): Unit = {
catalog.createTable(Identifier.of(Array("ns"), table), columns, partitions, emptyProps)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Some APIs are added since Spark 3.4. One config is added since Spark 4.0. So this test is only compilable for 3.4+ and only useful for 4.0.

}

private def selectWithMergeJoinHint(t1: String, t2: String): String = {
s"SELECT /*+ MERGE($t1, $t2) */ "
}

private def createJoinTestDF(
keys: Seq[(String, String)],
extraColumns: Seq[String] = Nil,
joinType: String = ""): DataFrame = {
val extraColList = if (extraColumns.isEmpty) "" else extraColumns.mkString(", ", ", ", "")
sql(s"""
|${selectWithMergeJoinHint("i", "p")}
|id, name, i.price as purchase_price, p.price as sale_price $extraColList
|FROM testcat.ns.$items i $joinType JOIN testcat.ns.$purchases p
|ON ${keys.map(k => s"i.${k._1} = p.${k._2}").mkString(" AND ")}
|ORDER BY id, purchase_price, sale_price $extraColList
|""".stripMargin)
}

test("Fallback to Spark for unsupported partitioning") {
val items_partitions = Array(identity("id"))
createTable(items, itemsColumns, items_partitions)

sql(
s"INSERT INTO testcat.ns.$items VALUES " +
"(1, 'aa', 40.0, cast('2020-01-01' as timestamp)), " +
"(3, 'bb', 10.0, cast('2020-01-01' as timestamp)), " +
"(4, 'cc', 15.5, cast('2020-02-01' as timestamp))")

createTable(purchases, purchasesColumns, Array.empty)
sql(
s"INSERT INTO testcat.ns.$purchases VALUES " +
"(1, 42.0, cast('2020-01-01' as timestamp)), " +
"(3, 19.5, cast('2020-02-01' as timestamp)), " +
"(5, 26.0, cast('2023-01-01' as timestamp)), " +
"(6, 50.0, cast('2023-02-01' as timestamp))")

Seq(true, false).foreach { shuffle =>
withSQLConf(
SQLConf.V2_BUCKETING_ENABLED.key -> "true",
"spark.sql.sources.v2.bucketing.shuffle.enabled" -> shuffle.toString,
SQLConf.V2_BUCKETING_PUSH_PART_VALUES_ENABLED.key -> "true",
SQLConf.V2_BUCKETING_PARTIALLY_CLUSTERED_DISTRIBUTION_ENABLED.key -> "true") {
val df = createJoinTestDF(Seq("id" -> "item_id"))
checkSparkAnswer(df)
}
}
}
}
Loading