Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix the schema mismatch between logical and physical for aggregate function, add AggregateUDFImpl::is_null #11989

Merged
merged 23 commits into from
Aug 21, 2024
Merged
Show file tree
Hide file tree
Changes from 21 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 17 additions & 17 deletions datafusion/core/src/physical_optimizer/enforce_sorting.rs
Original file line number Diff line number Diff line change
Expand Up @@ -845,17 +845,17 @@ mod tests {

let physical_plan = bounded_window_exec("non_nullable_col", sort_exprs, filter);

let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" FilterExec: NOT non_nullable_col@1",
" SortExec: expr=[non_nullable_col@1 ASC NULLS LAST], preserve_partitioning=[false]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

count() is always non nullable, so this change makes sense to mee

" CoalesceBatchesExec: target_batch_size=128",
" SortExec: expr=[non_nullable_col@1 DESC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];

let expected_optimized = ["WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
let expected_optimized = ["WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
" FilterExec: NOT non_nullable_col@1",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" CoalesceBatchesExec: target_batch_size=128",
" SortExec: expr=[non_nullable_col@1 DESC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];
Expand Down Expand Up @@ -1722,15 +1722,15 @@ mod tests {
// corresponding SortExecs together. Also, the inputs of these `SortExec`s
// are not necessarily the same to be able to remove them.
let expected_input = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 DESC NULLS LAST]",
" UnionExec",
" SortExec: expr=[nullable_col@0 DESC NULLS LAST], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC, non_nullable_col@1 ASC]",
" SortExec: expr=[nullable_col@0 DESC NULLS LAST], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]"];
let expected_optimized = [
"WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
"WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
" SortPreservingMergeExec: [nullable_col@0 ASC]",
" UnionExec",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC, non_nullable_col@1 ASC]",
Expand Down Expand Up @@ -1760,14 +1760,14 @@ mod tests {

// The `WindowAggExec` can get its required sorting from the leaf nodes directly.
// The unnecessary SortExecs should be removed
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 ASC,non_nullable_col@1 ASC]",
" UnionExec",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]"];
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 ASC]",
" UnionExec",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]",
Expand Down Expand Up @@ -2060,15 +2060,15 @@ mod tests {
let physical_plan =
bounded_window_exec("non_nullable_col", sort_exprs1, window_agg2);

let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[nullable_col@0 ASC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];

let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];
assert_optimized!(expected_input, expected_optimized, physical_plan, true);
Expand Down Expand Up @@ -2134,7 +2134,7 @@ mod tests {
let expected_input = vec![
"SortExec: expr=[nullable_col@0 ASC], preserve_partitioning=[false]",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" MemoryExec: partitions=1, partition_sizes=[0]",
];
assert_eq!(
Expand Down Expand Up @@ -2386,15 +2386,15 @@ mod tests {
let physical_plan = bounded_window_exec("a", sort_exprs, spm);

let expected_input = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [a@0 ASC,b@1 ASC]",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC,b@1 ASC",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" SortExec: expr=[a@0 ASC,b@1 ASC], preserve_partitioning=[false]",
" CsvExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e], has_header=false",
];
let expected_optimized = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[a@0 ASC,b@1 ASC], preserve_partitioning=[false]",
" CoalescePartitionsExec",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10",
Expand Down
4 changes: 2 additions & 2 deletions datafusion/core/src/physical_optimizer/sanity_checker.rs
Original file line number Diff line number Diff line change
Expand Up @@ -437,7 +437,7 @@ mod tests {
let sort = sort_exec(sort_exprs.clone(), source);
let bw = bounded_window_exec("c9", sort_exprs, sort);
assert_plan(bw.as_ref(), vec![
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[c9@0 ASC NULLS LAST], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"
]);
Expand All @@ -460,7 +460,7 @@ mod tests {
)];
let bw = bounded_window_exec("c9", sort_exprs, source);
assert_plan(bw.as_ref(), vec![
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" MemoryExec: partitions=1, partition_sizes=[0]"
]);
// Order requirement of the `BoundedWindowAggExec` is not satisfied. We expect to receive error during sanity check.
Expand Down
11 changes: 8 additions & 3 deletions datafusion/core/src/physical_planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -670,6 +670,12 @@ impl DefaultPhysicalPlanner {
let input_exec = children.one()?;
let physical_input_schema = input_exec.schema();
let logical_input_schema = input.as_ref().schema();
let physical_input_schema_from_logical: Arc<Schema> =
logical_input_schema.as_ref().clone().into();

if physical_input_schema != physical_input_schema_from_logical {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🎉

return internal_err!("Physical input schema should be the same as the one converted from logical input schema.");
}

let groups = self.create_grouping_physical_expr(
group_expr,
Expand Down Expand Up @@ -1548,7 +1554,7 @@ pub fn create_aggregate_expr_with_name_and_maybe_filter(
e: &Expr,
name: Option<String>,
logical_input_schema: &DFSchema,
_physical_input_schema: &Schema,
physical_input_schema: &Schema,
execution_props: &ExecutionProps,
) -> Result<AggregateExprWithOptionalArgs> {
match e {
Expand Down Expand Up @@ -1599,11 +1605,10 @@ pub fn create_aggregate_expr_with_name_and_maybe_filter(
let ordering_reqs: Vec<PhysicalSortExpr> =
physical_sort_exprs.clone().unwrap_or(vec![]);

let schema: Schema = logical_input_schema.clone().into();
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

workaround cleanup

let agg_expr =
AggregateExprBuilder::new(func.to_owned(), physical_args.to_vec())
.order_by(ordering_reqs.to_vec())
.schema(Arc::new(schema))
.schema(Arc::new(physical_input_schema.to_owned()))
.alias(name)
.with_ignore_nulls(ignore_nulls)
.with_distinct(*distinct)
Expand Down
26 changes: 18 additions & 8 deletions datafusion/expr/src/expr_schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -335,18 +335,28 @@ impl ExprSchemable for Expr {
}
}
Expr::Cast(Cast { expr, .. }) => expr.nullable(input_schema),
Expr::ScalarFunction(ScalarFunction { func, args }) => {
Ok(func.is_nullable(args, input_schema))
}
Expr::AggregateFunction(AggregateFunction { func, .. }) => {
// TODO: UDF should be able to customize nullability
if func.name() == "count" {
Ok(false)
} else {
Ok(true)
}
Ok(func.is_nullable())
}
Expr::WindowFunction(WindowFunction { fun, .. }) => match fun {
WindowFunctionDefinition::BuiltInWindowFunction(func) => {
if func.name() == "RANK"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

checking the name is probably fine given we are in the process of removing the enum anyways

This could also check the variants of func here as well

|| func.name() == "NTILE"
|| func.name() == "CUME_DIST"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am not sure if this list is complete. What about DenseRank and PercentRank?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Temporary code, there would be no name checking after #8709 is done. We can see that Row_Number is gone

{
Ok(false)
} else {
Ok(true)
}
}
WindowFunctionDefinition::AggregateUDF(func) => Ok(func.is_nullable()),
WindowFunctionDefinition::WindowUDF(udwf) => Ok(udwf.nullable()),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is great

},
Expr::ScalarVariable(_, _)
| Expr::TryCast { .. }
| Expr::ScalarFunction(..)
| Expr::WindowFunction { .. }
| Expr::Unnest(_)
| Expr::Placeholder(_) => Ok(true),
Expr::IsNull(_)
Expand Down
Loading