Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement predicate pruning for like expressions (prefix matching) #12978

Merged
merged 8 commits into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions datafusion/core/tests/fuzz_cases/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@ mod sort_fuzz;
mod aggregation_fuzzer;
mod equivalence;

mod pruning;

mod limit_fuzz;
mod sort_preserving_repartition_fuzz;
mod window_fuzz;
247 changes: 247 additions & 0 deletions datafusion/core/tests/fuzz_cases/pruning.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use arrow_array::{Array, RecordBatch, StringArray};
use arrow_schema::{DataType, Field, Schema};
use bytes::{BufMut, Bytes, BytesMut};
use datafusion::{
datasource::{
listing::PartitionedFile,
physical_plan::{parquet::ParquetExecBuilder, FileScanConfig},
},
prelude::*,
};
use datafusion_common::DFSchema;
use datafusion_execution::object_store::ObjectStoreUrl;
use datafusion_physical_expr::PhysicalExpr;
use datafusion_physical_plan::{collect, filter::FilterExec, ExecutionPlan};
use itertools::Itertools;
use object_store::{memory::InMemory, path::Path, ObjectStore, PutPayload};
use parquet::{
arrow::ArrowWriter,
file::properties::{EnabledStatistics, WriterProperties},
};
use rand::seq::SliceRandom;
use url::Url;

#[tokio::test]
async fn test_fuzz_utf8() {
// Fuzz testing for UTF8 predicate pruning
// The basic idea is that query results should always be the same with or without stats/pruning
// If we get this right we at least guarantee that there are no incorrect results
// There may still be suboptimal pruning or stats but that's something we can try to catch
// with more targeted tests.

// Since we know where the edge cases might be we don't do random black box fuzzing.
// Instead we fuzz on specific pre-defined axis:
//
// - Which characters are in each value. We want to make sure to include characters that when
// incremented, truncated or otherwise manipulated might cause issues.
// - The values in each row group. This impacts which min/max stats are generated for each rg.
// We'll generate combinations of the characters with lengths ranging from 1 to 4.
// - Truncation of statistics to 1, 2 or 3 characters as well as no truncation.

let mut rng = rand::thread_rng();

let characters = [
"z",
"0",
"~",
"ß",
"℣",
"%", // this one is useful for like/not like tests since it will result in randomly inserted wildcards
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍

"_", // this one is useful for like/not like tests since it will result in randomly inserted wildcards
"\u{7F}",
"\u{7FF}",
"\u{FF}",
"\u{10FFFF}",
"\u{D7FF}",
"\u{FDCF}",
// null character
"\u{0}",
];

let value_lengths = [1, 2, 3];

// generate all combinations of characters with lengths ranging from 1 to 4
let mut values = vec![];
for length in &value_lengths {
values.extend(
characters
.iter()
.cloned()
.combinations(*length)
// now get all permutations of each combination
.flat_map(|c| c.into_iter().permutations(*length))
// and join them into strings
.map(|c| c.join("")),
);
}

println!("Generated {} values", values.len());

// randomly pick 100 values
values.shuffle(&mut rng);
values.truncate(100);

let mut row_groups = vec![];
// generate all combinations of values for row groups (1 or 2 values per rg, more is unnecessary since we only get min/max stats out)
for rg_length in [1, 2] {
row_groups.extend(values.iter().cloned().combinations(rg_length));
}

println!("Generated {} row groups", row_groups.len());

// Randomly pick 100 row groups (combinations of said values)
row_groups.shuffle(&mut rng);
row_groups.truncate(100);

let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Utf8, false)]));
let df_schema = DFSchema::try_from(schema.clone()).unwrap();

let store = InMemory::new();
let mut files = vec![];
for (idx, truncation_length) in [Some(1), Some(2), None].iter().enumerate() {
// parquet files only support 32767 row groups per file, so chunk up into multiple files so we don't error if running on a large number of row groups
for (rg_idx, row_groups) in row_groups.chunks(32766).enumerate() {
let buf = write_parquet_file(
*truncation_length,
schema.clone(),
row_groups.to_vec(),
)
.await;
let filename = format!("test_fuzz_utf8_{idx}_{rg_idx}.parquet");
files.push((filename.clone(), buf.len()));
let payload = PutPayload::from(buf);
let path = Path::from(filename);
store.put(&path, payload).await.unwrap();
}
}

println!("Generated {} parquet files", files.len());

let ctx = SessionContext::new();

ctx.register_object_store(&Url::parse("memory://").unwrap(), Arc::new(store));

let mut predicates = vec![];
for value in values {
predicates.push(col("a").eq(lit(value.clone())));
predicates.push(col("a").not_eq(lit(value.clone())));
predicates.push(col("a").lt(lit(value.clone())));
predicates.push(col("a").lt_eq(lit(value.clone())));
predicates.push(col("a").gt(lit(value.clone())));
predicates.push(col("a").gt_eq(lit(value.clone())));
predicates.push(col("a").like(lit(value.clone())));
predicates.push(col("a").not_like(lit(value.clone())));
predicates.push(col("a").like(lit(format!("%{}", value.clone()))));
predicates.push(col("a").like(lit(format!("{}%", value.clone()))));
predicates.push(col("a").not_like(lit(format!("%{}", value.clone()))));
predicates.push(col("a").not_like(lit(format!("{}%", value.clone()))));
}

for predicate in predicates {
println!("Testing predicate {:?}", predicate);
let phys_expr_predicate = ctx
.create_physical_expr(predicate.clone(), &df_schema)
.unwrap();
let expected = execute_with_predicate(
&files,
phys_expr_predicate.clone(),
false,
schema.clone(),
&ctx,
)
.await;
let with_pruning = execute_with_predicate(
&files,
phys_expr_predicate,
true,
schema.clone(),
&ctx,
)
.await;
assert_eq!(expected, with_pruning);
}
}

async fn execute_with_predicate(
files: &[(String, usize)],
predicate: Arc<dyn PhysicalExpr>,
prune_stats: bool,
schema: Arc<Schema>,
ctx: &SessionContext,
) -> Vec<String> {
let scan =
FileScanConfig::new(ObjectStoreUrl::parse("memory://").unwrap(), schema.clone())
.with_file_group(
files
.iter()
.map(|(path, size)| PartitionedFile::new(path.clone(), *size as u64))
.collect(),
);
let mut builder = ParquetExecBuilder::new(scan);
if prune_stats {
builder = builder.with_predicate(predicate.clone())
}
let exec = Arc::new(builder.build()) as Arc<dyn ExecutionPlan>;
let exec =
Arc::new(FilterExec::try_new(predicate, exec).unwrap()) as Arc<dyn ExecutionPlan>;

let batches = collect(exec, ctx.task_ctx()).await.unwrap();
let mut values = vec![];
for batch in batches {
let column = batch
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap();
for i in 0..column.len() {
values.push(column.value(i).to_string());
}
}
values
}

async fn write_parquet_file(
truncation_length: Option<usize>,
schema: Arc<Schema>,
row_groups: Vec<Vec<String>>,
) -> Bytes {
let mut buf = BytesMut::new().writer();
let mut props = WriterProperties::builder();
if let Some(truncation_length) = truncation_length {
props = props.set_max_statistics_size(truncation_length);
}
props = props.set_statistics_enabled(EnabledStatistics::Chunk); // row group level
let props = props.build();
{
let mut writer =
ArrowWriter::try_new(&mut buf, schema.clone(), Some(props)).unwrap();
for rg_values in row_groups.iter() {
let arr = StringArray::from_iter_values(rg_values.iter());
let batch =
RecordBatch::try_new(schema.clone(), vec![Arc::new(arr)]).unwrap();
writer.write(&batch).unwrap();
writer.flush().unwrap(); // finishes the current row group and starts a new one
}
writer.finish().unwrap();
}
buf.into_inner().freeze()
}
Loading
Loading