-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add multi-column topk fuzz tests #7898
Merged
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,349 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Fuzz Test for Sort + Fetch/Limit (TopK!) | ||
|
||
use arrow::compute::concat_batches; | ||
use arrow::util::pretty::pretty_format_batches; | ||
use arrow::{array::Int32Array, record_batch::RecordBatch}; | ||
use arrow_array::{Float64Array, Int64Array, StringArray}; | ||
use arrow_schema::SchemaRef; | ||
use datafusion::datasource::MemTable; | ||
use datafusion::prelude::SessionContext; | ||
use datafusion_common::assert_contains; | ||
use rand::{thread_rng, Rng}; | ||
use std::sync::Arc; | ||
use test_utils::stagger_batch; | ||
|
||
#[tokio::test] | ||
async fn test_sort_topk_i32() { | ||
run_limit_fuzz_test(SortedData::new_i32).await | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_sort_topk_f64() { | ||
run_limit_fuzz_test(SortedData::new_f64).await | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_sort_topk_str() { | ||
run_limit_fuzz_test(SortedData::new_str).await | ||
} | ||
|
||
#[tokio::test] | ||
async fn test_sort_topk_i64str() { | ||
run_limit_fuzz_test(SortedData::new_i64str).await | ||
} | ||
|
||
/// Run TopK fuzz tests the specified input data with different | ||
/// different test functions so they can run in parallel) | ||
async fn run_limit_fuzz_test<F>(make_data: F) | ||
where | ||
F: Fn(usize) -> SortedData, | ||
{ | ||
let mut rng = thread_rng(); | ||
for size in [10, 1_0000, 10_000, 100_000] { | ||
let data = make_data(size); | ||
// test various limits including some random ones | ||
for limit in [1, 3, 7, 17, 10000, rng.gen_range(1..size * 2)] { | ||
// limit can be larger than the number of rows in the input | ||
run_limit_test(limit, &data).await; | ||
} | ||
} | ||
} | ||
|
||
/// The data column(s) to use for the TopK test | ||
/// | ||
/// Each variants stores the input batches and the expected sorted values | ||
/// compute the expected output for a given fetch (limit) value. | ||
#[derive(Debug)] | ||
enum SortedData { | ||
// single Int32 column | ||
I32 { | ||
batches: Vec<RecordBatch>, | ||
sorted: Vec<Option<i32>>, | ||
}, | ||
/// Single Float64 column | ||
F64 { | ||
batches: Vec<RecordBatch>, | ||
sorted: Vec<Option<f64>>, | ||
}, | ||
/// Single sorted String column | ||
Str { | ||
batches: Vec<RecordBatch>, | ||
sorted: Vec<Option<String>>, | ||
}, | ||
/// (i64, string) columns | ||
I64Str { | ||
batches: Vec<RecordBatch>, | ||
sorted: Vec<(Option<i64>, Option<String>)>, | ||
}, | ||
} | ||
|
||
impl SortedData { | ||
/// Create an i32 column of random values, with the specified number of | ||
/// rows, sorted the default | ||
fn new_i32(size: usize) -> Self { | ||
let mut rng = thread_rng(); | ||
// have some repeats (approximately 1/3 of the values are the same) | ||
let max = size as i32 / 3; | ||
let data: Vec<Option<i32>> = (0..size) | ||
.map(|_| { | ||
// no nulls for now | ||
Some(rng.gen_range(0..max)) | ||
}) | ||
.collect(); | ||
|
||
let batches = stagger_batch(int32_batch(data.iter().cloned())); | ||
|
||
let mut sorted = data; | ||
sorted.sort_unstable(); | ||
|
||
Self::I32 { batches, sorted } | ||
} | ||
|
||
/// Create an f64 column of random values, with the specified number of | ||
/// rows, sorted the default | ||
fn new_f64(size: usize) -> Self { | ||
let mut rng = thread_rng(); | ||
let mut data: Vec<Option<f64>> = (0..size / 3) | ||
.map(|_| { | ||
// no nulls for now | ||
Some(rng.gen_range(0.0..1.0f64)) | ||
}) | ||
.collect(); | ||
|
||
// have some repeats (approximately 1/3 of the values are the same) | ||
while data.len() < size { | ||
data.push(data[rng.gen_range(0..data.len())]); | ||
} | ||
|
||
let batches = stagger_batch(f64_batch(data.iter().cloned())); | ||
|
||
let mut sorted = data; | ||
sorted.sort_by(|a, b| a.partial_cmp(b).unwrap()); | ||
|
||
Self::F64 { batches, sorted } | ||
} | ||
|
||
/// Create an string column of random values, with the specified number of | ||
/// rows, sorted the default | ||
fn new_str(size: usize) -> Self { | ||
let mut rng = thread_rng(); | ||
let mut data: Vec<Option<String>> = (0..size / 3) | ||
.map(|_| { | ||
// no nulls for now | ||
Some(get_random_string(16)) | ||
}) | ||
.collect(); | ||
|
||
// have some repeats (approximately 1/3 of the values are the same) | ||
while data.len() < size { | ||
data.push(data[rng.gen_range(0..data.len())].clone()); | ||
} | ||
|
||
let batches = stagger_batch(string_batch(data.iter())); | ||
|
||
let mut sorted = data; | ||
sorted.sort_unstable(); | ||
|
||
Self::Str { batches, sorted } | ||
} | ||
|
||
/// Create two columns of random values (int64, string), with the specified number of | ||
/// rows, sorted the default | ||
fn new_i64str(size: usize) -> Self { | ||
let mut rng = thread_rng(); | ||
|
||
// 100 distinct values | ||
let strings: Vec<Option<String>> = (0..100) | ||
.map(|_| { | ||
// no nulls for now | ||
Some(get_random_string(16)) | ||
}) | ||
.collect(); | ||
|
||
// form inputs, with only 10 distinct integer values , to force collision checks | ||
let data = (0..size) | ||
.map(|_| { | ||
( | ||
Some(rng.gen_range(0..10)), | ||
strings[rng.gen_range(0..strings.len())].clone(), | ||
) | ||
}) | ||
.collect::<Vec<_>>(); | ||
|
||
let batches = stagger_batch(i64string_batch(data.iter())); | ||
|
||
let mut sorted = data; | ||
sorted.sort_unstable(); | ||
|
||
Self::I64Str { batches, sorted } | ||
} | ||
|
||
/// Return top top `limit` values as a RecordBatch | ||
fn topk_values(&self, limit: usize) -> RecordBatch { | ||
match self { | ||
Self::I32 { sorted, .. } => int32_batch(sorted.iter().take(limit).cloned()), | ||
Self::F64 { sorted, .. } => f64_batch(sorted.iter().take(limit).cloned()), | ||
Self::Str { sorted, .. } => string_batch(sorted.iter().take(limit)), | ||
Self::I64Str { sorted, .. } => i64string_batch(sorted.iter().take(limit)), | ||
} | ||
} | ||
|
||
/// Return the input data to sort | ||
fn batches(&self) -> Vec<RecordBatch> { | ||
match self { | ||
Self::I32 { batches, .. } => batches.clone(), | ||
Self::F64 { batches, .. } => batches.clone(), | ||
Self::Str { batches, .. } => batches.clone(), | ||
Self::I64Str { batches, .. } => batches.clone(), | ||
} | ||
} | ||
|
||
/// Return the schema of the input data | ||
fn schema(&self) -> SchemaRef { | ||
match self { | ||
Self::I32 { batches, .. } => batches[0].schema(), | ||
Self::F64 { batches, .. } => batches[0].schema(), | ||
Self::Str { batches, .. } => batches[0].schema(), | ||
Self::I64Str { batches, .. } => batches[0].schema(), | ||
} | ||
} | ||
|
||
/// Return the sort expression to use for this data, depending on the type | ||
fn sort_expr(&self) -> Vec<datafusion_expr::Expr> { | ||
match self { | ||
Self::I32 { .. } | Self::F64 { .. } | Self::Str { .. } => { | ||
vec![datafusion_expr::col("x").sort(true, true)] | ||
} | ||
Self::I64Str { .. } => { | ||
vec![ | ||
datafusion_expr::col("x").sort(true, true), | ||
datafusion_expr::col("y").sort(true, true), | ||
] | ||
} | ||
} | ||
} | ||
} | ||
|
||
/// Create a record batch with a single column of type `Int32` named "x" | ||
fn int32_batch(values: impl IntoIterator<Item = Option<i32>>) -> RecordBatch { | ||
RecordBatch::try_from_iter(vec![( | ||
"x", | ||
Arc::new(Int32Array::from_iter(values.into_iter())) as _, | ||
)]) | ||
.unwrap() | ||
} | ||
|
||
/// Create a record batch with a single column of type `Float64` named "x" | ||
fn f64_batch(values: impl IntoIterator<Item = Option<f64>>) -> RecordBatch { | ||
RecordBatch::try_from_iter(vec![( | ||
"x", | ||
Arc::new(Float64Array::from_iter(values.into_iter())) as _, | ||
)]) | ||
.unwrap() | ||
} | ||
|
||
/// Create a record batch with a single column of type `StringArray` named "x" | ||
fn string_batch<'a>(values: impl IntoIterator<Item = &'a Option<String>>) -> RecordBatch { | ||
RecordBatch::try_from_iter(vec![( | ||
"x", | ||
Arc::new(StringArray::from_iter(values.into_iter())) as _, | ||
)]) | ||
.unwrap() | ||
} | ||
|
||
/// Create a record batch with i64 column "x" and utf8 column "y" | ||
fn i64string_batch<'a>( | ||
values: impl IntoIterator<Item = &'a (Option<i64>, Option<String>)> + Clone, | ||
) -> RecordBatch { | ||
let ints = values.clone().into_iter().map(|(i, _)| *i); | ||
let strings = values.into_iter().map(|(_, s)| s); | ||
RecordBatch::try_from_iter(vec![ | ||
("x", Arc::new(Int64Array::from_iter(ints)) as _), | ||
("y", Arc::new(StringArray::from_iter(strings)) as _), | ||
]) | ||
.unwrap() | ||
} | ||
|
||
/// Run the TopK test, sorting the input batches with the specified ftch | ||
/// (limit) and compares the results to the expected values. | ||
async fn run_limit_test(fetch: usize, data: &SortedData) { | ||
let input = data.batches(); | ||
let schema = data.schema(); | ||
|
||
let table = MemTable::try_new(schema, vec![input]).unwrap(); | ||
|
||
let ctx = SessionContext::new(); | ||
let df = ctx | ||
.read_table(Arc::new(table)) | ||
.unwrap() | ||
.sort(data.sort_expr()) | ||
.unwrap() | ||
.limit(0, Some(fetch)) | ||
.unwrap(); | ||
|
||
// Verify the plan contains a TopK node | ||
{ | ||
let explain = df | ||
.clone() | ||
.explain(false, false) | ||
.unwrap() | ||
.collect() | ||
.await | ||
.unwrap(); | ||
let plan_text = pretty_format_batches(&explain).unwrap().to_string(); | ||
let expected = format!("TopK(fetch={fetch})"); | ||
assert_contains!(plan_text, expected); | ||
} | ||
|
||
let results = df.collect().await.unwrap(); | ||
let expected = data.topk_values(fetch); | ||
|
||
// Verify that all output batches conform to the specified batch size | ||
let max_batch_size = ctx.copied_config().batch_size(); | ||
for batch in &results { | ||
assert!(batch.num_rows() <= max_batch_size); | ||
} | ||
|
||
let results = concat_batches(&results[0].schema(), &results).unwrap(); | ||
|
||
let results = [results]; | ||
let expected = [expected]; | ||
|
||
assert_eq!( | ||
&expected, | ||
&results, | ||
"TopK mismatch fetch {fetch} \n\ | ||
expected rows {}, actual rows {}.\ | ||
\n\nExpected:\n{}\n\nActual:\n{}", | ||
expected[0].num_rows(), | ||
results[0].num_rows(), | ||
pretty_format_batches(&expected).unwrap(), | ||
pretty_format_batches(&results).unwrap(), | ||
); | ||
} | ||
|
||
/// Return random ASCII String with len | ||
fn get_random_string(len: usize) -> String { | ||
rand::thread_rng() | ||
.sample_iter(rand::distributions::Alphanumeric) | ||
.take(len) | ||
.map(char::from) | ||
.collect() | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is the multi-column fuzz test