Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add multi-column topk fuzz tests #7898

Merged
merged 4 commits into from
Oct 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
349 changes: 349 additions & 0 deletions datafusion/core/tests/fuzz_cases/limit_fuzz.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,349 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Fuzz Test for Sort + Fetch/Limit (TopK!)

use arrow::compute::concat_batches;
use arrow::util::pretty::pretty_format_batches;
use arrow::{array::Int32Array, record_batch::RecordBatch};
use arrow_array::{Float64Array, Int64Array, StringArray};
use arrow_schema::SchemaRef;
use datafusion::datasource::MemTable;
use datafusion::prelude::SessionContext;
use datafusion_common::assert_contains;
use rand::{thread_rng, Rng};
use std::sync::Arc;
use test_utils::stagger_batch;

#[tokio::test]
async fn test_sort_topk_i32() {
run_limit_fuzz_test(SortedData::new_i32).await
}

#[tokio::test]
async fn test_sort_topk_f64() {
run_limit_fuzz_test(SortedData::new_f64).await
}

#[tokio::test]
async fn test_sort_topk_str() {
run_limit_fuzz_test(SortedData::new_str).await
}

#[tokio::test]
async fn test_sort_topk_i64str() {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is the multi-column fuzz test

run_limit_fuzz_test(SortedData::new_i64str).await
}

/// Run TopK fuzz tests the specified input data with different
/// different test functions so they can run in parallel)
async fn run_limit_fuzz_test<F>(make_data: F)
where
F: Fn(usize) -> SortedData,
{
let mut rng = thread_rng();
for size in [10, 1_0000, 10_000, 100_000] {
let data = make_data(size);
// test various limits including some random ones
for limit in [1, 3, 7, 17, 10000, rng.gen_range(1..size * 2)] {
// limit can be larger than the number of rows in the input
run_limit_test(limit, &data).await;
}
}
}

/// The data column(s) to use for the TopK test
///
/// Each variants stores the input batches and the expected sorted values
/// compute the expected output for a given fetch (limit) value.
#[derive(Debug)]
enum SortedData {
// single Int32 column
I32 {
batches: Vec<RecordBatch>,
sorted: Vec<Option<i32>>,
},
/// Single Float64 column
F64 {
batches: Vec<RecordBatch>,
sorted: Vec<Option<f64>>,
},
/// Single sorted String column
Str {
batches: Vec<RecordBatch>,
sorted: Vec<Option<String>>,
},
/// (i64, string) columns
I64Str {
batches: Vec<RecordBatch>,
sorted: Vec<(Option<i64>, Option<String>)>,
},
}

impl SortedData {
/// Create an i32 column of random values, with the specified number of
/// rows, sorted the default
fn new_i32(size: usize) -> Self {
let mut rng = thread_rng();
// have some repeats (approximately 1/3 of the values are the same)
let max = size as i32 / 3;
let data: Vec<Option<i32>> = (0..size)
.map(|_| {
// no nulls for now
Some(rng.gen_range(0..max))
})
.collect();

let batches = stagger_batch(int32_batch(data.iter().cloned()));

let mut sorted = data;
sorted.sort_unstable();

Self::I32 { batches, sorted }
}

/// Create an f64 column of random values, with the specified number of
/// rows, sorted the default
fn new_f64(size: usize) -> Self {
let mut rng = thread_rng();
let mut data: Vec<Option<f64>> = (0..size / 3)
.map(|_| {
// no nulls for now
Some(rng.gen_range(0.0..1.0f64))
})
.collect();

// have some repeats (approximately 1/3 of the values are the same)
while data.len() < size {
data.push(data[rng.gen_range(0..data.len())]);
}

let batches = stagger_batch(f64_batch(data.iter().cloned()));

let mut sorted = data;
sorted.sort_by(|a, b| a.partial_cmp(b).unwrap());

Self::F64 { batches, sorted }
}

/// Create an string column of random values, with the specified number of
/// rows, sorted the default
fn new_str(size: usize) -> Self {
let mut rng = thread_rng();
let mut data: Vec<Option<String>> = (0..size / 3)
.map(|_| {
// no nulls for now
Some(get_random_string(16))
})
.collect();

// have some repeats (approximately 1/3 of the values are the same)
while data.len() < size {
data.push(data[rng.gen_range(0..data.len())].clone());
}

let batches = stagger_batch(string_batch(data.iter()));

let mut sorted = data;
sorted.sort_unstable();

Self::Str { batches, sorted }
}

/// Create two columns of random values (int64, string), with the specified number of
/// rows, sorted the default
fn new_i64str(size: usize) -> Self {
let mut rng = thread_rng();

// 100 distinct values
let strings: Vec<Option<String>> = (0..100)
.map(|_| {
// no nulls for now
Some(get_random_string(16))
})
.collect();

// form inputs, with only 10 distinct integer values , to force collision checks
let data = (0..size)
.map(|_| {
(
Some(rng.gen_range(0..10)),
strings[rng.gen_range(0..strings.len())].clone(),
)
})
.collect::<Vec<_>>();

let batches = stagger_batch(i64string_batch(data.iter()));

let mut sorted = data;
sorted.sort_unstable();

Self::I64Str { batches, sorted }
}

/// Return top top `limit` values as a RecordBatch
fn topk_values(&self, limit: usize) -> RecordBatch {
match self {
Self::I32 { sorted, .. } => int32_batch(sorted.iter().take(limit).cloned()),
Self::F64 { sorted, .. } => f64_batch(sorted.iter().take(limit).cloned()),
Self::Str { sorted, .. } => string_batch(sorted.iter().take(limit)),
Self::I64Str { sorted, .. } => i64string_batch(sorted.iter().take(limit)),
}
}

/// Return the input data to sort
fn batches(&self) -> Vec<RecordBatch> {
match self {
Self::I32 { batches, .. } => batches.clone(),
Self::F64 { batches, .. } => batches.clone(),
Self::Str { batches, .. } => batches.clone(),
Self::I64Str { batches, .. } => batches.clone(),
}
}

/// Return the schema of the input data
fn schema(&self) -> SchemaRef {
match self {
Self::I32 { batches, .. } => batches[0].schema(),
Self::F64 { batches, .. } => batches[0].schema(),
Self::Str { batches, .. } => batches[0].schema(),
Self::I64Str { batches, .. } => batches[0].schema(),
}
}

/// Return the sort expression to use for this data, depending on the type
fn sort_expr(&self) -> Vec<datafusion_expr::Expr> {
match self {
Self::I32 { .. } | Self::F64 { .. } | Self::Str { .. } => {
vec![datafusion_expr::col("x").sort(true, true)]
}
Self::I64Str { .. } => {
vec![
datafusion_expr::col("x").sort(true, true),
datafusion_expr::col("y").sort(true, true),
]
}
}
}
}

/// Create a record batch with a single column of type `Int32` named "x"
fn int32_batch(values: impl IntoIterator<Item = Option<i32>>) -> RecordBatch {
RecordBatch::try_from_iter(vec![(
"x",
Arc::new(Int32Array::from_iter(values.into_iter())) as _,
)])
.unwrap()
}

/// Create a record batch with a single column of type `Float64` named "x"
fn f64_batch(values: impl IntoIterator<Item = Option<f64>>) -> RecordBatch {
RecordBatch::try_from_iter(vec![(
"x",
Arc::new(Float64Array::from_iter(values.into_iter())) as _,
)])
.unwrap()
}

/// Create a record batch with a single column of type `StringArray` named "x"
fn string_batch<'a>(values: impl IntoIterator<Item = &'a Option<String>>) -> RecordBatch {
RecordBatch::try_from_iter(vec![(
"x",
Arc::new(StringArray::from_iter(values.into_iter())) as _,
)])
.unwrap()
}

/// Create a record batch with i64 column "x" and utf8 column "y"
fn i64string_batch<'a>(
values: impl IntoIterator<Item = &'a (Option<i64>, Option<String>)> + Clone,
) -> RecordBatch {
let ints = values.clone().into_iter().map(|(i, _)| *i);
let strings = values.into_iter().map(|(_, s)| s);
RecordBatch::try_from_iter(vec![
("x", Arc::new(Int64Array::from_iter(ints)) as _),
("y", Arc::new(StringArray::from_iter(strings)) as _),
])
.unwrap()
}

/// Run the TopK test, sorting the input batches with the specified ftch
/// (limit) and compares the results to the expected values.
async fn run_limit_test(fetch: usize, data: &SortedData) {
let input = data.batches();
let schema = data.schema();

let table = MemTable::try_new(schema, vec![input]).unwrap();

let ctx = SessionContext::new();
let df = ctx
.read_table(Arc::new(table))
.unwrap()
.sort(data.sort_expr())
.unwrap()
.limit(0, Some(fetch))
.unwrap();

// Verify the plan contains a TopK node
{
let explain = df
.clone()
.explain(false, false)
.unwrap()
.collect()
.await
.unwrap();
let plan_text = pretty_format_batches(&explain).unwrap().to_string();
let expected = format!("TopK(fetch={fetch})");
assert_contains!(plan_text, expected);
}

let results = df.collect().await.unwrap();
let expected = data.topk_values(fetch);

// Verify that all output batches conform to the specified batch size
let max_batch_size = ctx.copied_config().batch_size();
for batch in &results {
assert!(batch.num_rows() <= max_batch_size);
}

let results = concat_batches(&results[0].schema(), &results).unwrap();

let results = [results];
let expected = [expected];

assert_eq!(
&expected,
&results,
"TopK mismatch fetch {fetch} \n\
expected rows {}, actual rows {}.\
\n\nExpected:\n{}\n\nActual:\n{}",
expected[0].num_rows(),
results[0].num_rows(),
pretty_format_batches(&expected).unwrap(),
pretty_format_batches(&results).unwrap(),
);
}

/// Return random ASCII String with len
fn get_random_string(len: usize) -> String {
rand::thread_rng()
.sample_iter(rand::distributions::Alphanumeric)
.take(len)
.map(char::from)
.collect()
}
2 changes: 2 additions & 0 deletions datafusion/core/tests/fuzz_cases/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,5 +19,7 @@ mod aggregate_fuzz;
mod join_fuzz;
mod merge_fuzz;
mod sort_fuzz;

mod limit_fuzz;
mod sort_preserving_repartition_fuzz;
mod window_fuzz;
Loading