Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement trait based API for define AggregateUDF #8733

Merged
merged 4 commits into from
Jan 9, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions datafusion-examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ cargo run --example csv_sql
- [`simple_udf.rs`](examples/simple_udf.rs): Define and invoke a User Defined Scalar Function (UDF)
- [`advanced_udf.rs`](examples/advanced_udf.rs): Define and invoke a more complicated User Defined Scalar Function (UDF)
- [`simple_udaf.rs`](examples/simple_udaf.rs): Define and invoke a User Defined Aggregate Function (UDAF)
- [`advanced_udaf.rs`](examples/advanced_udaf.rs): Define and invoke a more complicated User Defined Aggregate Function (UDAF)
- [`simple_udfw.rs`](examples/simple_udwf.rs): Define and invoke a User Defined Window Function (UDWF)
- [`advanced_udwf.rs`](examples/advanced_udwf.rs): Define and invoke a more complicated User Defined Window Function (UDWF)

Expand Down
228 changes: 228 additions & 0 deletions datafusion-examples/examples/advanced_udaf.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use datafusion::{arrow::datatypes::DataType, logical_expr::Volatility};
use std::{any::Any, sync::Arc};

use arrow::{
array::{ArrayRef, Float32Array},
record_batch::RecordBatch,
};
use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion_common::{cast::as_float64_array, ScalarValue};
use datafusion_expr::{Accumulator, AggregateUDF, AggregateUDFImpl, Signature};

/// This example shows how to use the full AggregateUDFImpl API to implement a user
/// defined aggregate function. As in the `simple_udaf.rs` example, this struct implements
/// a function `accumulator` that returns the `Accumulator` instance.
///
/// To do so, we must implement the `AggregateUDFImpl` trait.
#[derive(Debug, Clone)]
struct GeoMeanUdf {
signature: Signature,
}

impl GeoMeanUdf {
/// Create a new instance of the GeoMeanUdf struct
fn new() -> Self {
Self {
signature: Signature::exact(
// this function will always take one arguments of type f64
vec![DataType::Float64],
// this function is deterministic and will always return the same
// result for the same input
Volatility::Immutable,
),
}
}
}

impl AggregateUDFImpl for GeoMeanUdf {
/// We implement as_any so that we can downcast the AggregateUDFImpl trait object
fn as_any(&self) -> &dyn Any {
self
}

/// Return the name of this function
fn name(&self) -> &str {
"geo_mean"
}

/// Return the "signature" of this function -- namely that types of arguments it will take
fn signature(&self) -> &Signature {
&self.signature
}

/// What is the type of value that will be returned by this function.
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Float64)
}

/// This is the accumulator factory; DataFusion uses it to create new accumulators.
fn accumulator(&self, _arg: &DataType) -> Result<Box<dyn Accumulator>> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍

While this "advanced" usage isn't much more advanced than the current "simple" UDAF I think this PR now provides a home / plausible way to implement the full GroupsAccumulator API for UDAFs (which is the powerful, very performant API used by built in aggregate functions in DataFusion)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Filed #8793 to track

Ok(Box::new(GeometricMean::new()))
}

/// This is the description of the state. accumulator's state() must match the types here.
fn state_type(&self, _return_type: &DataType) -> Result<Vec<DataType>> {
Ok(vec![DataType::Float64, DataType::UInt32])
}
}

/// A UDAF has state across multiple rows, and thus we require a `struct` with that state.
#[derive(Debug)]
struct GeometricMean {
n: u32,
prod: f64,
}

impl GeometricMean {
// how the struct is initialized
pub fn new() -> Self {
GeometricMean { n: 0, prod: 1.0 }
}
}

// UDAFs are built using the trait `Accumulator`, that offers DataFusion the necessary functions
// to use them.
impl Accumulator for GeometricMean {
// This function serializes our state to `ScalarValue`, which DataFusion uses
// to pass this state between execution stages.
// Note that this can be arbitrary data.
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.prod),
ScalarValue::from(self.n),
])
}

// DataFusion expects this function to return the final value of this aggregator.
// in this case, this is the formula of the geometric mean
fn evaluate(&self) -> Result<ScalarValue> {
let value = self.prod.powf(1.0 / self.n as f64);
Ok(ScalarValue::from(value))
}

// DataFusion calls this function to update the accumulator's state for a batch
// of inputs rows. In this case the product is updated with values from the first column
// and the count is updated based on the row count
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
let arr = &values[0];
(0..arr.len()).try_for_each(|index| {
let v = ScalarValue::try_from_array(arr, index)?;

if let ScalarValue::Float64(Some(value)) = v {
self.prod *= value;
self.n += 1;
} else {
unreachable!("")
}
Ok(())
})
}

// Optimization hint: this trait also supports `update_batch` and `merge_batch`,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this optimization hit seems out of place -- I think this comment should say something more like

// Merge the output of `Self::state()` from other instances of this accumulator
// into this accumulator's state

// that can be used to perform these operations on arrays instead of single values.
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
let arr = &states[0];
(0..arr.len()).try_for_each(|index| {
let v = states
.iter()
.map(|array| ScalarValue::try_from_array(array, index))
.collect::<Result<Vec<_>>>()?;
if let (ScalarValue::Float64(Some(prod)), ScalarValue::UInt32(Some(n))) =
(&v[0], &v[1])
{
self.prod *= prod;
self.n += n;
} else {
unreachable!("")
}
Ok(())
})
}

fn size(&self) -> usize {
std::mem::size_of_val(self)
}
}

// create local session context with an in-memory table
fn create_context() -> Result<SessionContext> {
use datafusion::arrow::datatypes::{Field, Schema};
use datafusion::datasource::MemTable;
// define a schema.
let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Float32, false)]));

// define data in two partitions
let batch1 = RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Float32Array::from(vec![2.0, 4.0, 8.0]))],
)?;
let batch2 = RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Float32Array::from(vec![64.0]))],
)?;

// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();

// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
let provider = MemTable::try_new(schema, vec![vec![batch1], vec![batch2]])?;
ctx.register_table("t", Arc::new(provider))?;
Ok(ctx)
}

#[tokio::main]
async fn main() -> Result<()> {
let ctx = create_context()?;

// create the AggregateUDF
let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
ctx.register_udaf(geometric_mean.clone());

let sql_df = ctx.sql("SELECT geo_mean(a) FROM t").await?;
sql_df.show().await?;

// get a DataFrame from the context
// this table has 1 column `a` f32 with values {2,4,8,64}, whose geometric mean is 8.0.
let df = ctx.table("t").await?;

// perform the aggregation
let df = df.aggregate(vec![], vec![geometric_mean.call(vec![col("a")])])?;

// note that "a" is f32, not f64. DataFusion coerces it to match the UDAF's signature.

// execute the query
let results = df.collect().await?;

// downcast the array to the expected type
let result = as_float64_array(results[0].column(0))?;

// verify that the calculation is correct
assert!((result.value(0) - 8.0).abs() < f64::EPSILON);
println!("The geometric mean of [2,4,8,64] is {}", result.value(0));

Ok(())
}
49 changes: 23 additions & 26 deletions datafusion/core/tests/user_defined/user_defined_aggregates.rs
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,7 @@ use datafusion::{
assert_batches_eq,
error::Result,
logical_expr::{
AccumulatorFactoryFunction, AggregateUDF, ReturnTypeFunction, Signature,
StateTypeFunction, TypeSignature, Volatility,
AccumulatorFactoryFunction, AggregateUDF, Signature, TypeSignature, Volatility,
},
physical_plan::Accumulator,
prelude::SessionContext,
Expand All @@ -46,7 +45,7 @@ use datafusion::{
use datafusion_common::{
assert_contains, cast::as_primitive_array, exec_err, DataFusionError,
};
use datafusion_expr::create_udaf;
use datafusion_expr::{create_udaf, SimpleAggregateUDF};
use datafusion_physical_expr::expressions::AvgAccumulator;

/// Test to show the contents of the setup
Expand Down Expand Up @@ -141,7 +140,7 @@ async fn test_udaf_as_window_with_frame_without_retract_batch() {
let sql = "SELECT time_sum(time) OVER(ORDER BY time ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as time_sum from t";
// Note if this query ever does start working
let err = execute(&ctx, sql).await.unwrap_err();
assert_contains!(err.to_string(), "This feature is not implemented: Aggregate can not be used as a sliding accumulator because `retract_batch` is not implemented: AggregateUDF { name: \"time_sum\"");
assert_contains!(err.to_string(), "This feature is not implemented: Aggregate can not be used as a sliding accumulator because `retract_batch` is not implemented: AggregateUDF { inner: AggregateUDF { name: \"time_sum\", signature: Signature { type_signature: Exact([Timestamp(Nanosecond, None)]), volatility: Immutable }, fun: \"<FUNC>\" } }(t.time) ORDER BY [t.time ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING");
}

/// Basic query for with a udaf returning a structure
Expand Down Expand Up @@ -408,26 +407,27 @@ impl TimeSum {

fn register(ctx: &mut SessionContext, test_state: Arc<TestState>, name: &str) {
let timestamp_type = DataType::Timestamp(TimeUnit::Nanosecond, None);
let input_type = vec![timestamp_type.clone()];

// Returns the same type as its input
let return_type = Arc::new(timestamp_type.clone());
let return_type: ReturnTypeFunction =
Arc::new(move |_| Ok(Arc::clone(&return_type)));
let return_type = timestamp_type.clone();

let state_type = Arc::new(vec![timestamp_type.clone()]);
let state_type: StateTypeFunction =
Arc::new(move |_| Ok(Arc::clone(&state_type)));
let state_type = vec![timestamp_type.clone()];

let volatility = Volatility::Immutable;

let signature = Signature::exact(vec![timestamp_type], volatility);

let captured_state = Arc::clone(&test_state);
let accumulator: AccumulatorFactoryFunction =
Arc::new(move |_| Ok(Box::new(Self::new(Arc::clone(&captured_state)))));

let time_sum =
AggregateUDF::new(name, &signature, &return_type, &accumulator, &state_type);
let time_sum = AggregateUDF::from(SimpleAggregateUDF::new(
name,
input_type,
return_type,
volatility,
accumulator,
state_type,
));

// register the selector as "time_sum"
ctx.register_udaf(time_sum)
Expand Down Expand Up @@ -510,11 +510,8 @@ impl FirstSelector {
}

fn register(ctx: &mut SessionContext) {
let return_type = Arc::new(Self::output_datatype());
let state_type = Arc::new(Self::state_datatypes());

let return_type: ReturnTypeFunction = Arc::new(move |_| Ok(return_type.clone()));
let state_type: StateTypeFunction = Arc::new(move |_| Ok(state_type.clone()));
let return_type = Self::output_datatype();
let state_type = Self::state_datatypes();

// Possible input signatures
let signatures = vec![TypeSignature::Exact(Self::input_datatypes())];
Expand All @@ -526,13 +523,13 @@ impl FirstSelector {

let name = "first";

let first = AggregateUDF::new(
name,
&Signature::one_of(signatures, volatility),
&return_type,
&accumulator,
&state_type,
);
let first = AggregateUDF::from(SimpleAggregateUDF::new_with_signature(
name.to_string(),
Signature::one_of(signatures, volatility),
return_type,
accumulator,
state_type,
));

// register the selector as "first"
ctx.register_udaf(first)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -291,8 +291,8 @@ async fn udaf_as_window_func() -> Result<()> {
context.register_udaf(my_acc);

let sql = "SELECT a, MY_ACC(b) OVER(PARTITION BY a) FROM my_table";
let expected = r#"Projection: my_table.a, AggregateUDF { name: "my_acc", signature: Signature { type_signature: Exact([Int32]), volatility: Immutable }, fun: "<FUNC>" }(my_table.b) PARTITION BY [my_table.a] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
WindowAggr: windowExpr=[[AggregateUDF { name: "my_acc", signature: Signature { type_signature: Exact([Int32]), volatility: Immutable }, fun: "<FUNC>" }(my_table.b) PARTITION BY [my_table.a] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING]]
let expected = r#"Projection: my_table.a, AggregateUDF { inner: AggregateUDF { name: "my_acc", signature: Signature { type_signature: Exact([Int32]), volatility: Immutable }, fun: "<FUNC>" } }(my_table.b) PARTITION BY [my_table.a] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
WindowAggr: windowExpr=[[AggregateUDF { inner: AggregateUDF { name: "my_acc", signature: Signature { type_signature: Exact([Int32]), volatility: Immutable }, fun: "<FUNC>" } }(my_table.b) PARTITION BY [my_table.a] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING]]
TableScan: my_table"#;

let dataframe = context.sql(sql).await.unwrap();
Expand Down
Loading