Skip to content

Commit

Permalink
optimize mlflow
Browse files Browse the repository at this point in the history
  • Loading branch information
jieguangzhou committed Sep 20, 2022
1 parent 8cddb10 commit 82b9001
Show file tree
Hide file tree
Showing 20 changed files with 259 additions and 425 deletions.
38 changes: 26 additions & 12 deletions docs/docs/en/guide/task/mlflow.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@ The MLflow plugin currently supports and will support the following:
- MLflow Models
- MLFLOW: Use `MLflow models serve` to deploy a model service
- Docker: Run the container after packaging the docker image
- Docker Compose: Use docker compose to run the container, it will replace the docker run above

## Create Task

Expand Down Expand Up @@ -98,22 +97,26 @@ You can now use this feature to run all MLFlow projects on Github (For example [

![mlflow-models-docker](../../../../img/tasks/demo/mlflow-models-docker.png)

#### DOCKER COMPOSE
## Environment to Prepare

![mlflow-models-docker-compose](../../../../img/tasks/demo/mlflow-models-docker-compose.png)
### Conda Environment
Please install [anaconda](https://docs.continuum.io/anaconda/install/) or [miniconda](https://docs.conda.io/en/latest/miniconda.html#installing) in advance.

| **Parameter** | **Description** |
|------------------|----------------------------------------------------------|
| Max Cpu Limit | For example, `1.0` or `0.5`, the same as docker compose. |
| Max Memory Limit | For example `1G` or `500M`, the same as docker compose. |
**Method A:**

## Environment to Prepare
Config anaconda environment in `/dolphinscheduler/conf/env/dolphinscheduler_env.sh`.

### Conda Environment
Add the following content to the file:

```bash
# config anaconda environment
export PATH=/opt/anaconda3/bin:$PATH
```

You need to enter the admin account to configure a conda environment variable(Please
install [anaconda](https://docs.continuum.io/anaconda/install/)
or [miniconda](https://docs.conda.io/en/latest/miniconda.html#installing) in advance).

**Method B:**

You need to enter the admin account to configure a conda environment variable.

![mlflow-conda-env](../../../../img/tasks/demo/mlflow-conda-env.png)

Expand All @@ -139,3 +142,14 @@ After running, an MLflow service is started.
After this, you can visit the MLflow service (`http://localhost:5000`) page to view the experiments and models.

![mlflow-server](../../../../img/tasks/demo/mlflow-server.png)

### Preset Algorithm Repository Configuration

if you can't access github, you can modify the following fields in the `commom.properties` configuration file to replace the github address with an accessible address.

```yaml
# mlflow task plugin preset repository
ml.mlflow.preset_repository=https://github.com/apache/dolphinscheduler-mlflow
# mlflow task plugin preset repository version
ml.mlflow.preset_repository_version="main"
```
38 changes: 27 additions & 11 deletions docs/docs/zh/guide/task/mlflow.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@ MLflow 组件用于执行 MLflow 任务,目前包含Mlflow Projects,和MLflo
- MLflow Models
- MLFLOW: 直接使用 `mlflow models serve` 部署模型。
- Docker: 打包 DOCKER 镜像后部署模型。
- Docker Compose: 使用Docker Compose 部署模型,将会取代上面的Docker部署。

## 创建任务

Expand Down Expand Up @@ -90,28 +89,33 @@ MLflow 组件用于执行 MLflow 任务,目前包含Mlflow Projects,和MLflo

![mlflow-models-docker](../../../../img/tasks/demo/mlflow-models-docker.png)

#### DOCKER COMPOSE
## 环境准备

![mlflow-models-docker-compose](../../../../img/tasks/demo/mlflow-models-docker-compose.png)
### conda 环境配置

| **任务参数** | **描述** |
|----------|--------------------------------------|
| 最大CPU限制 |`1.0` 或者 `0.5`,与 docker compose 一致 |
| 最大内存限制 |`1G` 或者 `500M`,与 docker compose 一致 |
请提前[安装anaconda](https://docs.continuum.io/anaconda/install/) 或者[安装miniconda](https://docs.conda.io/en/latest/miniconda.html#installing)

## 环境准备
**方法A:**

### conda 环境配置
配置文件:/dolphinscheduler/conf/env/dolphinscheduler_env.sh。

在文件最后添加内容
```
# 配置你的conda环境路径
export PATH=/opt/anaconda3/bin:$PATH
```

你需要进入admin账户配置一个conda环境变量(请提前[安装anaconda](https://docs.continuum.io/anaconda/install/)
或者[安装miniconda](https://docs.conda.io/en/latest/miniconda.html#installing) )。
**方法B:**

你需要进入admin账户配置一个conda环境变量。

![mlflow-conda-env](../../../../img/tasks/demo/mlflow-conda-env.png)

后续注意配置任务时,环境选择上面创建的conda环境,否则程序会找不到conda环境。

![mlflow-set-conda-env](../../../../img/tasks/demo/mlflow-set-conda-env.png)


### MLflow service 启动

确保你已经安装MLflow,可以使用`pip install mlflow`进行安装。
Expand All @@ -130,3 +134,15 @@ mlflow server -h 0.0.0.0 -p 5000 --serve-artifacts --backend-store-uri sqlite://

![mlflow-server](../../../../img/tasks/demo/mlflow-server.png)


### 内置算法仓库配置

如果遇到github无法访问的情况,可以修改`commom.properties`配置文件的以下字段,将github地址替换能访问的地址。

```yaml
# mlflow task plugin preset repository
ml.mlflow.preset_repository=https://github.com/apache/dolphinscheduler-mlflow
# mlflow task plugin preset repository version
ml.mlflow.preset_repository_version="main"
```

Binary file removed docs/img/tasks/demo/mlflow-models-docker-compose.png
Binary file not shown.
7 changes: 6 additions & 1 deletion dolphinscheduler-common/src/main/resources/common.properties
Original file line number Diff line number Diff line change
Expand Up @@ -105,4 +105,9 @@ alert.rpc.port=50052
conda.path=/opt/anaconda3/etc/profile.d/conda.sh

# Task resource limit state
task.resource.limit.state=false
task.resource.limit.state=false

# mlflow task plugin preset repository
ml.mlflow.preset_repository=https://github.com/apache/dolphinscheduler-mlflow
# mlflow task plugin preset repository version
ml.mlflow.preset_repository_version="main"
Original file line number Diff line number Diff line change
Expand Up @@ -32,15 +32,6 @@ tasks:
parameters: -P learning_rate=0.2 -P colsample_bytree=0.8 -P subsample=0.9
experiment_name: xgboost


- name: deploy_mlflow
deps: [train_xgboost_native]
task_type: MLflowModels
model_uri: models:/xgboost_native/Production
mlflow_tracking_uri: *mlflow_tracking_uri
deploy_mode: MLFLOW
port: 7001

- name: train_automl
task_type: MLFlowProjectsAutoML
mlflow_tracking_uri: *mlflow_tracking_uri
Expand Down Expand Up @@ -68,11 +59,11 @@ tasks:
data_path: /data/examples/iris
search_params: max_depth=[5, 10];n_estimators=[100, 200]


- name: deploy_docker_compose
task_type: MLflowModels
- name: deploy_mlflow
deps: [train_basic_algorithm]
task_type: MLflowModels
model_uri: models:/iris_B/Production
mlflow_tracking_uri: *mlflow_tracking_uri
deploy_mode: DOCKER COMPOSE
port: 7003
deploy_mode: MLFLOW
port: 7001

Original file line number Diff line number Diff line change
Expand Up @@ -43,17 +43,6 @@
experiment_name="xgboost",
)

# Using MLFLOW to deploy model from custom mlflow project
deploy_mlflow = MLflowModels(
name="deploy_mlflow",
model_uri="models:/xgboost_native/Production",
mlflow_tracking_uri=mlflow_tracking_uri,
deploy_mode=MLflowDeployType.MLFLOW,
port=7001,
)

train_custom >> deploy_mlflow

# run automl to train model
train_automl = MLFlowProjectsAutoML(
name="train_automl",
Expand Down Expand Up @@ -88,16 +77,16 @@
search_params="max_depth=[5, 10];n_estimators=[100, 200]",
)

# Using DOCKER COMPOSE to deploy model from train_basic_algorithm
deploy_docker_compose = MLflowModels(
name="deploy_docker_compose",
# Using MLFLOW to deploy model from training lightgbm project
deploy_mlflow = MLflowModels(
name="deploy_mlflow",
model_uri="models:/iris_B/Production",
mlflow_tracking_uri=mlflow_tracking_uri,
deploy_mode=MLflowDeployType.DOCKER_COMPOSE,
port=7003,
deploy_mode=MLflowDeployType.MLFLOW,
port=7001,
)

train_basic_algorithm >> deploy_docker_compose
train_basic_algorithm >> deploy_mlflow

pd.submit()

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,6 @@ class MLflowDeployType(str):

MLFLOW = "MLFLOW"
DOCKER = "DOCKER"
DOCKER_COMPOSE = "DOCKER COMPOSE"


DEFAULT_MLFLOW_TRACKING_URI = "http://127.0.0.1:5000"
Expand Down Expand Up @@ -83,10 +82,8 @@ class MLflowModels(BaseMLflow):
:param model_uri: Model-URI of MLflow , support models:/<model_name>/suffix format and runs:/ format.
See https://mlflow.org/docs/latest/tracking.html#artifact-stores
:param mlflow_tracking_uri: MLflow tracking server uri, default is http://127.0.0.1:5000
:param deploy_mode: MLflow deploy mode, support MLFLOW, DOCKER, DOCKER COMPOSE, default is DOCKER
:param deploy_mode: MLflow deploy mode, support MLFLOW, DOCKER, default is DOCKER
:param port: deploy port, default is 7000
:param cpu_limit: cpu limit, default is 1.0
:param memory_limit: memory limit, default is 500M
"""

mlflow_task_type = MLflowTaskType.MLFLOW_MODELS
Expand All @@ -95,8 +92,6 @@ class MLflowModels(BaseMLflow):
"deploy_type",
"deploy_model_key",
"deploy_port",
"cpu_limit",
"memory_limit",
}

def __init__(
Expand All @@ -106,8 +101,6 @@ def __init__(
mlflow_tracking_uri: Optional[str] = DEFAULT_MLFLOW_TRACKING_URI,
deploy_mode: Optional[str] = MLflowDeployType.DOCKER,
port: Optional[int] = 7000,
cpu_limit: Optional[float] = 1.0,
memory_limit: Optional[str] = "500M",
*args,
**kwargs
):
Expand All @@ -116,8 +109,6 @@ def __init__(
self.deploy_type = deploy_mode.upper()
self.deploy_model_key = model_uri
self.deploy_port = port
self.cpu_limit = cpu_limit
self.memory_limit = memory_limit


class MLFlowProjectsCustom(BaseMLflow):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -63,19 +63,15 @@ def test_mlflow_models_get_define():
name = "mlflow_models"
model_uri = "models:/xgboost_native/Production"
port = 7001
cpu_limit = 2.0
memory_limit = "600M"

expect = deepcopy(EXPECT)
expect["name"] = name
task_params = expect["taskParams"]
task_params["mlflowTrackingUri"] = MLFLOW_TRACKING_URI
task_params["mlflowTaskType"] = MLflowTaskType.MLFLOW_MODELS
task_params["deployType"] = MLflowDeployType.DOCKER_COMPOSE
task_params["deployType"] = MLflowDeployType.DOCKER
task_params["deployModelKey"] = model_uri
task_params["deployPort"] = port
task_params["cpuLimit"] = cpu_limit
task_params["memoryLimit"] = memory_limit

with patch(
"pydolphinscheduler.core.task.Task.gen_code_and_version",
Expand All @@ -85,10 +81,8 @@ def test_mlflow_models_get_define():
name=name,
model_uri=model_uri,
mlflow_tracking_uri=MLFLOW_TRACKING_URI,
deploy_mode=MLflowDeployType.DOCKER_COMPOSE,
deploy_mode=MLflowDeployType.DOCKER,
port=port,
cpu_limit=cpu_limit,
memory_limit=memory_limit,
)
assert task.get_define() == expect

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,15 +28,17 @@ private MlflowConstants() {

public static final String JOB_TYPE_CUSTOM_PROJECT = "CustomProject";

public static final String PRESET_REPOSITORY = "https://github.com/apache/dolphinscheduler-mlflow";
public static final String PRESET_REPOSITORY_KEY = "ml.mlflow.preset_repository";

public static final String PRESET_REPOSITORY_VERSION_KEY = "ml.mlflow.preset_repository_version";

public static final String PRESET_PATH = "dolphinscheduler-mlflow";
public static final String PRESET_REPOSITORY = "https://github.com/apache/dolphinscheduler-mlflow";

public static final String PRESET_REPOSITORY_VERSION = "main";

public static final String PRESET_AUTOML_PROJECT = PRESET_PATH + "#Project-AutoML";
public static final String PRESET_AUTOML_PROJECT = "#Project-AutoML";

public static final String PRESET_BASIC_ALGORITHM_PROJECT = PRESET_PATH + "#Project-BasicAlgorithm";
public static final String PRESET_BASIC_ALGORITHM_PROJECT = "#Project-BasicAlgorithm";

public static final String MLFLOW_TASK_TYPE_PROJECTS = "MLflow Projects";

Expand All @@ -46,14 +48,6 @@ private MlflowConstants() {

public static final String MLFLOW_MODELS_DEPLOY_TYPE_DOCKER = "DOCKER";

public static final String MLFLOW_MODELS_DEPLOY_TYPE_DOCKER_COMPOSE = "DOCKER COMPOSE";

/**
* template file
*/
public static final String TEMPLATE_DOCKER_COMPOSE = "docker-compose.yml";


/**
* mlflow command
*/
Expand Down Expand Up @@ -81,8 +75,7 @@ private MlflowConstants() {

public static final String MLFLOW_RUN_CUSTOM_PROJECT = "mlflow run $repo "
+ "%s "
+ "--experiment-name=\"%s\" "
+ "--version=\"%s\" ";
+ "--experiment-name=\"%s\"";

public static final String MLFLOW_MODELS_SERVE = "mlflow models serve -m %s --port %s -h 0.0.0.0";

Expand All @@ -94,20 +87,10 @@ private MlflowConstants() {
+ "--health-cmd \"curl --fail http://127.0.0.1:8080/ping || exit 1\" --health-interval 5s --health-retries 20"
+ " %s";

public static final String DOCKER_COMPOSE_RUN = "docker-compose up -d";

public static final String SET_DOCKER_COMPOSE_ENV = "export DS_TASK_MLFLOW_IMAGE_NAME=%s\n"
+ "export DS_TASK_MLFLOW_CONTAINER_NAME=%s\n"
+ "export DS_TASK_MLFLOW_DEPLOY_PORT=%s\n"
+ "export DS_TASK_MLFLOW_CPU_LIMIT=%s\n"
+ "export DS_TASK_MLFLOW_MEMORY_LIMIT=%s";


public static final String DOCKER_HEALTH_CHECK = "docker inspect --format \"{{json .State.Health.Status }}\" %s";

public static final int DOCKER_HEALTH_CHECK_TIMEOUT = 20;

public static final int DOCKER_HEALTH_CHECK_INTERVAL = 5000;

public static final String GIT_CLONE_REPO = "git clone %s %s";
}
Loading

0 comments on commit 82b9001

Please sign in to comment.