This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
zipfian random sampler without replacement (#12113)
* code compiles * update doc * fix bug and add test * fix lint
- Loading branch information
1 parent
1b60478
commit 6f7254c
Showing
3 changed files
with
259 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2016 by Contributors | ||
* \file sample_op.cc | ||
* \brief CPU Implementation of unique sample op | ||
*/ | ||
|
||
#include "./unique_sample_op.h" | ||
#include "../tensor/init_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(SampleUniqueZifpianParam); | ||
|
||
#define MXNET_OPERATOR_REGISTER_UNIQUE_SAMPLE(name, ParamType) \ | ||
NNVM_REGISTER_OP(name) \ | ||
.set_num_inputs(0) \ | ||
.set_num_outputs(2) \ | ||
.set_attr_parser(ParamParser<ParamType>) \ | ||
.set_attr<FResourceRequest>("FResourceRequest", UniqueSampleResource) \ | ||
.add_arguments(ParamType::__FIELDS__()) | ||
|
||
MXNET_OPERATOR_REGISTER_UNIQUE_SAMPLE(_sample_unique_zipfian, | ||
SampleUniqueZifpianParam) | ||
.describe(R"code(Draw random samples from an an approximately log-uniform | ||
or Zipfian distribution without replacement. | ||
This operation takes a 2-D shape `(batch_size, num_sampled)`, | ||
and randomly generates *num_sampled* samples from the range of integers [0, range_max) | ||
for each instance in the batch. | ||
The elements in each instance are drawn without replacement from the base distribution. | ||
The base distribution for this operator is an approximately log-uniform or Zipfian distribution: | ||
P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1) | ||
Additionaly, it also returns the number of trials used to obtain `num_sampled` samples for | ||
each instance in the batch. | ||
Example:: | ||
samples, trials = _sample_unique_zipfian(750000, shape=(4, 8192)) | ||
unique(samples[0]) = 8192 | ||
unique(samples[3]) = 8192 | ||
trials[0] = 16435 | ||
)code" ADD_FILELINE) | ||
.set_attr<nnvm::FInferShape>("FInferShape", SampleUniqueShape<SampleUniqueZifpianParam>) | ||
.set_attr<nnvm::FInferType>("FInferType", SampleUniqueType<SampleUniqueZifpianParam>) | ||
.set_attr<FCompute>("FCompute<cpu>", SampleUniqueZifpian); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2018 by Contributors | ||
* \file sample_op.h | ||
* \brief Elementary unique sampling operators | ||
*/ | ||
#ifndef MXNET_OPERATOR_RANDOM_UNIQUE_SAMPLE_OP_H_ | ||
#define MXNET_OPERATOR_RANDOM_UNIQUE_SAMPLE_OP_H_ | ||
|
||
#include <mxnet/operator_util.h> | ||
#include <mshadow/base.h> | ||
#include <string> | ||
#include <vector> | ||
#include <unordered_set> | ||
#include <algorithm> | ||
#include <cmath> | ||
#include "../mxnet_op.h" | ||
#include "../operator_common.h" | ||
#include "./sampler.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct SampleUniqueZifpianParam : public dmlc::Parameter<SampleUniqueZifpianParam> { | ||
int range_max; | ||
TShape shape; | ||
DMLC_DECLARE_PARAMETER(SampleUniqueZifpianParam) { | ||
DMLC_DECLARE_FIELD(range_max) | ||
.describe("The number of possible classes."); | ||
DMLC_DECLARE_FIELD(shape) | ||
.set_default(TShape()) | ||
.describe("2-D shape of the output, where shape[0] is the batch size, and shape[1] " | ||
"is the number of candidates to sample for each batch."); | ||
} | ||
}; | ||
|
||
template<typename ParamType> | ||
inline bool SampleUniqueShape(const nnvm::NodeAttrs& attrs, | ||
std::vector<TShape> *in_attrs, | ||
std::vector<TShape> *out_attrs) { | ||
const ParamType& param = nnvm::get<ParamType>(attrs.parsed); | ||
CHECK_EQ(in_attrs->size(), 0U); | ||
CHECK_EQ(out_attrs->size(), 2U); | ||
// output shape is known | ||
if ((*out_attrs)[0].ndim() == 2 && param.shape.ndim() == 0) { | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::Shape1((*out_attrs)[0][0])); | ||
return true; | ||
} | ||
CHECK_EQ(param.shape.ndim(), 2U); | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, param.shape); | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::Shape1(param.shape[0])); | ||
return true; | ||
} | ||
|
||
template<typename ParamType> | ||
inline bool SampleUniqueType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int> *in_attrs, | ||
std::vector<int> *out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 0U); | ||
CHECK_EQ(out_attrs->size(), 2U); | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kInt64); | ||
TYPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::kInt64); | ||
return true; | ||
} | ||
|
||
inline std::vector<ResourceRequest> UniqueSampleResource(const NodeAttrs& attrs) { | ||
return {ResourceRequest::kParallelRandom}; | ||
} | ||
|
||
/*! | ||
* \brief Launch a generic kernel with parallel unique random generator | ||
* \tparam gen random generator | ||
* \tparam batch_size the batch size | ||
* \tparam num_sampled the number of unique samples per batch | ||
* \tparam Args Varargs type to eventually pass to the OP::Map() function | ||
*/ | ||
template<typename GType, typename DType, typename OP, typename ...Args> | ||
inline static void LaunchUniqueRNG(mshadow::Stream<cpu> *s, | ||
common::random::RandGenerator<cpu, GType> *gen, | ||
const int batch_size, const size_t num_sampled, | ||
std::vector<std::unordered_set<DType>> *results, | ||
Args... args) { | ||
// minimal check to avoid division by zero, below. | ||
// if `N` is zero the map operation is a no-op in any case. | ||
if (batch_size <= 0 || num_sampled <= 0) return; | ||
const int nthread = std::min(batch_size, RandGenerator<cpu>::kNumRandomStates); | ||
const int step = (batch_size + nthread - 1) / nthread; | ||
Kernel<OP, cpu>::Launch(s, nthread, *gen, batch_size, num_sampled, results, step, args...); | ||
} | ||
|
||
struct UniqueSampleUniformKernel { | ||
template<typename GType, typename DType> | ||
MSHADOW_XINLINE static void Map(int tid, RandGenerator<cpu, GType> gen, | ||
const int batch_size, const size_t num_sampled, | ||
std::vector<std::unordered_set<DType>> *results, | ||
const int step, const GType log_range_max, | ||
DType *samples, DType *num_tries) { | ||
const int begin = tid * step; | ||
const int end = (tid + 1) * step; | ||
typename RandGenerator<cpu, GType>::Impl generator(&gen, tid); | ||
for (int i = begin; i < end && i < batch_size; i++) { | ||
auto &result = results->at(i); | ||
const int base = i * num_sampled; | ||
DType tries = 0; | ||
while (result.size() != num_sampled) { | ||
const double x = generator.uniform(); | ||
const DType value = static_cast<DType>(lround(exp(x * log_range_max)) - 1); | ||
// sampling without replacement | ||
if (result.find(value) == result.end()) { | ||
samples[base + result.size()] = value; | ||
result.emplace(value); | ||
} | ||
tries += 1; | ||
} | ||
num_tries[i] = tries; | ||
} | ||
} | ||
}; | ||
|
||
inline void SampleUniqueZifpian(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using DType = int64_t; | ||
using GType = double; | ||
const SampleUniqueZifpianParam& param = nnvm::get<SampleUniqueZifpianParam>(attrs.parsed); | ||
const int batch_size = param.shape[0]; | ||
const size_t num_sampled = static_cast<size_t>(param.shape[1]); | ||
const double log_range_max = log(param.range_max); | ||
CHECK_EQ(outputs.size(), 2U); | ||
CHECK_LE(num_sampled, param.range_max) | ||
<< "Number of samples cannot exceed the number of possible classes"; | ||
// rand generator resource and result sets | ||
RandGenerator<cpu, GType> *pgen = ctx.requested[0].get_parallel_random<cpu, GType>(); | ||
std::vector<std::unordered_set<DType>> results(batch_size); | ||
for (int i = 0; i < batch_size; i++) { | ||
results[i].reserve(num_sampled); | ||
} | ||
|
||
DType *num_tries = outputs[1].dptr<DType>(); | ||
DType *samples = outputs[0].dptr<DType>(); | ||
Stream<cpu> *s = ctx.get_stream<cpu>(); | ||
LaunchUniqueRNG<GType, DType, UniqueSampleUniformKernel>(s, pgen, batch_size, num_sampled, | ||
&results, log_range_max, samples, | ||
num_tries); | ||
} | ||
|
||
|
||
} // namespace op | ||
} // namespace mxnet | ||
#endif // MXNET_OPERATOR_RANDOM_UNIQUE_SAMPLE_OP_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters