Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

fix unidirectional model's parameter format #12055

Merged
merged 2 commits into from
Aug 8, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions python/mxnet/gluon/rnn/rnn_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@
# pylint: disable=too-many-lines, arguments-differ
"""Definition of various recurrent neural network layers."""
from __future__ import print_function
import re

__all__ = ['RNN', 'LSTM', 'GRU']

from ... import ndarray, symbol
Expand Down Expand Up @@ -92,10 +94,17 @@ def __repr__(self):
def _collect_params_with_prefix(self, prefix=''):
if prefix:
prefix += '.'
def convert_key(key): # for compatibility with old parameter format
key = key.split('_')
return '_unfused.{}.{}_cell.{}'.format(key[0][1:], key[0][0], '_'.join(key[1:]))
ret = {prefix + convert_key(key) : val for key, val in self._reg_params.items()}
pattern = re.compile(r'(l|r)(\d)_(i2h|h2h)_(weight|bias)\Z')
def convert_key(m, bidirectional): # for compatibility with old parameter format
d, l, g, t = [m.group(i) for i in range(1, 5)]
if bidirectional:
return '_unfused.{}.{}_cell.{}_{}'.format(l, d, g, t)
else:
return '_unfused.{}.{}_{}'.format(l, g, t)
bidirectional = any(pattern.match(k).group(1) == 'r' for k in self._reg_params)

ret = {prefix + convert_key(pattern.match(key), bidirectional) : val
for key, val in self._reg_params.items()}
for name, child in self._children.items():
ret.update(child._collect_params_with_prefix(prefix + name))
return ret
Expand Down