Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Numpy compatible max #15161

Merged
merged 24 commits into from
Jun 19, 2019
Merged

Numpy compatible max #15161

merged 24 commits into from
Jun 19, 2019

Conversation

stu1130
Copy link
Contributor

@stu1130 stu1130 commented Jun 6, 2019

Description

numpy amax operator

Checklist

Essentials

Please feel free to remove inapplicable items for your PR.

  • The PR title starts with [MXNET-$JIRA_ID], where $JIRA_ID refers to the relevant JIRA issue created (except PRs with tiny changes)
  • Changes are complete (i.e. I finished coding on this PR)
  • All changes have test coverage:
  • Unit tests are added for small changes to verify correctness (e.g. adding a new operator)
  • Nightly tests are added for complicated/long-running ones (e.g. changing distributed kvstore)
  • Build tests will be added for build configuration changes (e.g. adding a new build option with NCCL)
  • Code is well-documented:
  • For user-facing API changes, API doc string has been updated.
  • For new C++ functions in header files, their functionalities and arguments are documented.
  • For new examples, README.md is added to explain the what the example does, the source of the dataset, expected performance on test set and reference to the original paper if applicable
  • Check the API doc at http://mxnet-ci-doc.s3-accelerate.dualstack.amazonaws.com/PR-$PR_ID/$BUILD_ID/index.html
  • To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change

Changes

Comments

@haojin2 @reminisce

@stu1130 stu1130 changed the title [WIP] numpy max numpy max Jun 6, 2019
@stu1130 stu1130 changed the title numpy max Numpy compatible max Jun 6, 2019
@piyushghai
Copy link
Contributor

@stu1130 Can you look into the CI failures on this one ?

@mxnet-label-bot Add [Numpy, pr-awaiting-review, Operator]

haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Jul 30, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Jul 31, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Jul 31, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Jul 31, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Jul 31, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Jul 31, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 1, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 1, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 1, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 1, 2019
reminisce pushed a commit to reminisce/mxnet that referenced this pull request Aug 1, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 2, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 2, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 2, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 2, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 4, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 4, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 4, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 4, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 5, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 5, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 6, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 6, 2019
haojin2 pushed a commit to haojin2/incubator-mxnet that referenced this pull request Aug 7, 2019
* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check
haojin2 added a commit to haojin2/incubator-mxnet that referenced this pull request Aug 7, 2019
haojin2 added a commit that referenced this pull request Aug 8, 2019
* [Do not review] [Do not merge] New numpy-compatible sum (#14739)

* Add numpy namespace and initial impl of np.sum (not complete)

* Clean up

* Fix import error

* numpy sum

* add test and backward data type support

* add license to test_numpy_op.py

* improve test to reduce flakiness

* fix sanity build

* extra numeric test and imperative test

* add error message for initial argument

* [numpy] Infra for supporting numpy ops in imperative mode and Gluon APIs (#14758)

* Infra of new ndarray and symbol types for numpy operators

* Rename

* Fix import problem

* Refactor

* Remove redundant code

* Add docstring

* More on numpy ndarray and symbol

* Override unimplemented methdos for ndarray and _NumpySymbol

* Fix built-in methods of ndarray and _NumpySymbol

* Fix test and sanity check

* Fix pylint

* Address cr comments

* Add unit tests for ndarray and _NumpySymbol

* Add _true_divide

* Fix gpu build

* Add future import division

* More correct way of checking if an output is from a np compat op

* Fix gpu build

* Fix output ndarray/symbol types with at least one new ndarray/symbol

* Modify true_divide doc

* Fix flaky copying zero-size arrays via gpus

* Fix zero size in gluon hybridize and zeros/ones symbol not creating new symbol type

* Fix doc

* Enable np op compat check with name prefix (#14897)

* [numpy] Numpy dot (#14831)

* Numpy Dot case 1-4 + case 3.5 forward and 0.5 backward

* Backward computation and test coverage

* numpy-compatible mean (#14859)

* [numpy] Some np ops for d2l (#14924)

* Add np transpose

More ops and namespaces for submodules

Add relu and sigmoid

Add reshape

Fix symbolic name mismatch

Add maximum and minimum

* Add convenience fluent method

* Add ndarray.item()

* Fix CI

* Fix lint

* Fix lint

* Fix reshape gpu

* Add example

* Remove python notebook outputs

* Remove notebook output

* Add one more example

* [numpy] Refactor np modules (#14989)

* Refactor

* Initial refactoring

* Fix notebook

* Move numpy op check from backend to frontend

* Add homogeneous ndarray check

* Fix grouping inhomogeneous types of symbols

* Improve error handling of different types of symbols as outputs

* Fix test

* Fix numpy test

* Fix ci

* Try to fix gpu ci failure

* [numpy] Refactor np module (example runs through) (#15055)

* Refactor notebook

* notebook working with hybrid block

* More refactoring

* Remove unnecessary use_np_compat

* Use class decorator to initialize numpy ndarrays in parameter.py

* Clear notebook outputs

* Improve np decorator

* Remove npe op from optimizer

* Fix CI

* Fix functools.wraps issue in Python2

* Fix ci

* Change np_compat to np_shape

* Temporarily disable test_amp

* Numpy-compatible stack (#15027)

* numpy stack

* migrate to use_np_shape

* Numpy Unary Ops (#15010)

* Unary Ops

* new version of unit tests

* [numpy] Fix np branch after rebase (#15086)

* Add np_array semantics for Gluon

Fix notebook

Fix sanity

Fix gluon deferred infer shape

Add np.random.uniform

Add random normal

Add boolean comparison ops

Add np.ndarray indexing

Reformat test ndarray indexing

Fix unit tests

Add one more test of indexing

Fix sanity

Enable amp test

Add np.arange

Revert cython unit test to ctypes

Delete unnecessary use_np_shape decorator from test

Rebase with numpy branch

support range as index

Fix python2 range type check

Add argmax

Disable clojure test

* Fix ci

* Add np.linalg.norm for ord='fro'

* Fix pylint

* numpy concatenate (#15104)

* [WIP][numpy] Fix for D2L Chapters 2/3/4 (#15139)

* Fix

* Fix linear regression gluon

* More fix

* Fix pylint

* Fix for chapter 4

* Add np.add mul div mod pow sub and shuffle

* Fix model selection, underfitting, overfitting

* Fix weight decay

* Fix dropout

* Fix

* Fix chapter 4

* [numpy] Fix d2l performance regression (#15173)

* Add np array adapter decorator for layers

* Fix performance regression caused by too many conversions between nd.NDArray and np.ndarray

* Fix pylint

* Fix test backward compatibility issue

* Fix test_lambda

* Fix (#15188)

* fix for chapter6 conv nn (#15224)

* [numpy] Fix d2l chapter8 (#15237)

* Add np op doc

* Fix several issues

* Add a N-D dot b 2D support

* Simplify array creation api

* Add swapaxes

* Fix rnn gluon

* More fix

* Fix pylint

* Delete

* Fix mp windows

* fix for ch11 (#15244)

* Numpy-compatible split (#15049)

* numpy split

* numpy split

* unit test

* unit test

* [numpy] [DO NOT MERGE] Fix d2l chapters 9 and 13 (#15246)

* Add npx batch_dot and topk

* Text embedding uses numpy

* Fix SoftmaxCrossEntropyLoss with np

* Fix sentiment cnn

* Fix pylint

* Fix dot attention

* Fix seq2seq attention

* Add np.tile

* Fix transformer

* Fix ci

* Fix ci and rebase

* [numpy] Fix d2l chapter 5 (#15264)

* Fix parameter initializer

* Add np.save and np.load

* Fix read-write

* Fix lint

* Numpy compatible max (#15161)

* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check

* Numpy compatible multinomial (#15219)

* draft of multinomial

* rename to more concise name

* finish shape

* complete the forward function

* complete forward without handle 0 dimension & scalar

* handle 0 dimension

* add new line

* fix lint

* fix the build error

* fix lint

* finish unit test

* change the registration

* make multinomial support pvals as mx.ndarray

* delete newline

* fix lint error

* support input as list, mx.ndarray, np.ndarray & unit test

* fix lint

* fix the include error

* fix lint

* refactor & pass the tensor instead of tuple to kernel

* fix lint

* updata the doc

* address the comment

* Numpy compatible linspace (#15256)

* draft

* finish linspace implementation

* finish linspace

* delete newline

* fix pylint

* add more unit test

* address comment

* add more test case

* disable too-many-arguments

* resolve confliction

* add ctx

* numpy-compatible cumsum (#15309)

* [numpy] Misc fix for other chapters (#15332)

* Add np.prod

* Fix ndarray.reshape accepting positional integers as arguments

* Rebase

* Fix rebase error

* Add np.ndarray.flatten

* Fix

* Add broadcast_to

* Add meshgrid and broadcast_arrays

* Fix sin, cos, sinh, cosh not supporting scalars

* Add more unary ops supporting python scalars

* Fix

* Fix

* Fix ci

* Fix sanity

* [numpy] Change d2l chapters cv and gan to use numpy (#15368)

* Change op name style to lower case underscore

* Add ops under image to npx

* Add image submodule to npx

* Fix split_and_load use np

* Fix fine tuning

* Fix bbox and anchor

* Fix odd

* Fix ssd and rcnn

* Remove restriction on binary element-wise scalar

* Fix gan

* Fix sanity

* Try to fix website build failure

* Add npx.random.seed

* Fix doc

* add doc for multinomial, dot, cumsum, clip, abs, exp, arctan (#15386)

* [numpy] Fix several places in numpy (#15398)

* Fix

* More fix

* [numpy] fix cython (#15418)

* add cython support for numpy

* stay with original API for backward compatibility

* fix after rebase

* get rid of coverage in clang60 mkldnn

* fix lint issues

* fix flaky test and get rid of extra print

* remove numpy examples

* revert #15309 #15256 #15219 #15161

* remove numpy docs

* remove changes to contrib/text/embedding.py

* remove numpy changes to gluon peripherals

* Revert "remove numpy docs"

This reverts commit c104695.

* get rid of most operators

* Revert "get rid of coverage in clang60 mkldnn"

This reverts commit 77dc905.

* remove np-compatible from mxnet.image mxnet.initializer

* address comments
anirudhacharya pushed a commit to anirudhacharya/mxnet that referenced this pull request Aug 20, 2019
* [Do not review] [Do not merge] New numpy-compatible sum (apache#14739)

* Add numpy namespace and initial impl of np.sum (not complete)

* Clean up

* Fix import error

* numpy sum

* add test and backward data type support

* add license to test_numpy_op.py

* improve test to reduce flakiness

* fix sanity build

* extra numeric test and imperative test

* add error message for initial argument

* [numpy] Infra for supporting numpy ops in imperative mode and Gluon APIs (apache#14758)

* Infra of new ndarray and symbol types for numpy operators

* Rename

* Fix import problem

* Refactor

* Remove redundant code

* Add docstring

* More on numpy ndarray and symbol

* Override unimplemented methdos for ndarray and _NumpySymbol

* Fix built-in methods of ndarray and _NumpySymbol

* Fix test and sanity check

* Fix pylint

* Address cr comments

* Add unit tests for ndarray and _NumpySymbol

* Add _true_divide

* Fix gpu build

* Add future import division

* More correct way of checking if an output is from a np compat op

* Fix gpu build

* Fix output ndarray/symbol types with at least one new ndarray/symbol

* Modify true_divide doc

* Fix flaky copying zero-size arrays via gpus

* Fix zero size in gluon hybridize and zeros/ones symbol not creating new symbol type

* Fix doc

* Enable np op compat check with name prefix (apache#14897)

* [numpy] Numpy dot (apache#14831)

* Numpy Dot case 1-4 + case 3.5 forward and 0.5 backward

* Backward computation and test coverage

* numpy-compatible mean (apache#14859)

* [numpy] Some np ops for d2l (apache#14924)

* Add np transpose

More ops and namespaces for submodules

Add relu and sigmoid

Add reshape

Fix symbolic name mismatch

Add maximum and minimum

* Add convenience fluent method

* Add ndarray.item()

* Fix CI

* Fix lint

* Fix lint

* Fix reshape gpu

* Add example

* Remove python notebook outputs

* Remove notebook output

* Add one more example

* [numpy] Refactor np modules (apache#14989)

* Refactor

* Initial refactoring

* Fix notebook

* Move numpy op check from backend to frontend

* Add homogeneous ndarray check

* Fix grouping inhomogeneous types of symbols

* Improve error handling of different types of symbols as outputs

* Fix test

* Fix numpy test

* Fix ci

* Try to fix gpu ci failure

* [numpy] Refactor np module (example runs through) (apache#15055)

* Refactor notebook

* notebook working with hybrid block

* More refactoring

* Remove unnecessary use_np_compat

* Use class decorator to initialize numpy ndarrays in parameter.py

* Clear notebook outputs

* Improve np decorator

* Remove npe op from optimizer

* Fix CI

* Fix functools.wraps issue in Python2

* Fix ci

* Change np_compat to np_shape

* Temporarily disable test_amp

* Numpy-compatible stack (apache#15027)

* numpy stack

* migrate to use_np_shape

* Numpy Unary Ops (apache#15010)

* Unary Ops

* new version of unit tests

* [numpy] Fix np branch after rebase (apache#15086)

* Add np_array semantics for Gluon

Fix notebook

Fix sanity

Fix gluon deferred infer shape

Add np.random.uniform

Add random normal

Add boolean comparison ops

Add np.ndarray indexing

Reformat test ndarray indexing

Fix unit tests

Add one more test of indexing

Fix sanity

Enable amp test

Add np.arange

Revert cython unit test to ctypes

Delete unnecessary use_np_shape decorator from test

Rebase with numpy branch

support range as index

Fix python2 range type check

Add argmax

Disable clojure test

* Fix ci

* Add np.linalg.norm for ord='fro'

* Fix pylint

* numpy concatenate (apache#15104)

* [WIP][numpy] Fix for D2L Chapters 2/3/4 (apache#15139)

* Fix

* Fix linear regression gluon

* More fix

* Fix pylint

* Fix for chapter 4

* Add np.add mul div mod pow sub and shuffle

* Fix model selection, underfitting, overfitting

* Fix weight decay

* Fix dropout

* Fix

* Fix chapter 4

* [numpy] Fix d2l performance regression (apache#15173)

* Add np array adapter decorator for layers

* Fix performance regression caused by too many conversions between nd.NDArray and np.ndarray

* Fix pylint

* Fix test backward compatibility issue

* Fix test_lambda

* Fix (apache#15188)

* fix for chapter6 conv nn (apache#15224)

* [numpy] Fix d2l chapter8 (apache#15237)

* Add np op doc

* Fix several issues

* Add a N-D dot b 2D support

* Simplify array creation api

* Add swapaxes

* Fix rnn gluon

* More fix

* Fix pylint

* Delete

* Fix mp windows

* fix for ch11 (apache#15244)

* Numpy-compatible split (apache#15049)

* numpy split

* numpy split

* unit test

* unit test

* [numpy] [DO NOT MERGE] Fix d2l chapters 9 and 13 (apache#15246)

* Add npx batch_dot and topk

* Text embedding uses numpy

* Fix SoftmaxCrossEntropyLoss with np

* Fix sentiment cnn

* Fix pylint

* Fix dot attention

* Fix seq2seq attention

* Add np.tile

* Fix transformer

* Fix ci

* Fix ci and rebase

* [numpy] Fix d2l chapter 5 (apache#15264)

* Fix parameter initializer

* Add np.save and np.load

* Fix read-write

* Fix lint

* Numpy compatible max (apache#15161)

* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check

* Numpy compatible multinomial (apache#15219)

* draft of multinomial

* rename to more concise name

* finish shape

* complete the forward function

* complete forward without handle 0 dimension & scalar

* handle 0 dimension

* add new line

* fix lint

* fix the build error

* fix lint

* finish unit test

* change the registration

* make multinomial support pvals as mx.ndarray

* delete newline

* fix lint error

* support input as list, mx.ndarray, np.ndarray & unit test

* fix lint

* fix the include error

* fix lint

* refactor & pass the tensor instead of tuple to kernel

* fix lint

* updata the doc

* address the comment

* Numpy compatible linspace (apache#15256)

* draft

* finish linspace implementation

* finish linspace

* delete newline

* fix pylint

* add more unit test

* address comment

* add more test case

* disable too-many-arguments

* resolve confliction

* add ctx

* numpy-compatible cumsum (apache#15309)

* [numpy] Misc fix for other chapters (apache#15332)

* Add np.prod

* Fix ndarray.reshape accepting positional integers as arguments

* Rebase

* Fix rebase error

* Add np.ndarray.flatten

* Fix

* Add broadcast_to

* Add meshgrid and broadcast_arrays

* Fix sin, cos, sinh, cosh not supporting scalars

* Add more unary ops supporting python scalars

* Fix

* Fix

* Fix ci

* Fix sanity

* [numpy] Change d2l chapters cv and gan to use numpy (apache#15368)

* Change op name style to lower case underscore

* Add ops under image to npx

* Add image submodule to npx

* Fix split_and_load use np

* Fix fine tuning

* Fix bbox and anchor

* Fix odd

* Fix ssd and rcnn

* Remove restriction on binary element-wise scalar

* Fix gan

* Fix sanity

* Try to fix website build failure

* Add npx.random.seed

* Fix doc

* add doc for multinomial, dot, cumsum, clip, abs, exp, arctan (apache#15386)

* [numpy] Fix several places in numpy (apache#15398)

* Fix

* More fix

* [numpy] fix cython (apache#15418)

* add cython support for numpy

* stay with original API for backward compatibility

* fix after rebase

* get rid of coverage in clang60 mkldnn

* fix lint issues

* fix flaky test and get rid of extra print

* remove numpy examples

* revert apache#15309 apache#15256 apache#15219 apache#15161

* remove numpy docs

* remove changes to contrib/text/embedding.py

* remove numpy changes to gluon peripherals

* Revert "remove numpy docs"

This reverts commit c104695.

* get rid of most operators

* Revert "get rid of coverage in clang60 mkldnn"

This reverts commit 77dc905.

* remove np-compatible from mxnet.image mxnet.initializer

* address comments
access2rohit pushed a commit to access2rohit/incubator-mxnet that referenced this pull request Sep 25, 2019
* [Do not review] [Do not merge] New numpy-compatible sum (apache#14739)

* Add numpy namespace and initial impl of np.sum (not complete)

* Clean up

* Fix import error

* numpy sum

* add test and backward data type support

* add license to test_numpy_op.py

* improve test to reduce flakiness

* fix sanity build

* extra numeric test and imperative test

* add error message for initial argument

* [numpy] Infra for supporting numpy ops in imperative mode and Gluon APIs (apache#14758)

* Infra of new ndarray and symbol types for numpy operators

* Rename

* Fix import problem

* Refactor

* Remove redundant code

* Add docstring

* More on numpy ndarray and symbol

* Override unimplemented methdos for ndarray and _NumpySymbol

* Fix built-in methods of ndarray and _NumpySymbol

* Fix test and sanity check

* Fix pylint

* Address cr comments

* Add unit tests for ndarray and _NumpySymbol

* Add _true_divide

* Fix gpu build

* Add future import division

* More correct way of checking if an output is from a np compat op

* Fix gpu build

* Fix output ndarray/symbol types with at least one new ndarray/symbol

* Modify true_divide doc

* Fix flaky copying zero-size arrays via gpus

* Fix zero size in gluon hybridize and zeros/ones symbol not creating new symbol type

* Fix doc

* Enable np op compat check with name prefix (apache#14897)

* [numpy] Numpy dot (apache#14831)

* Numpy Dot case 1-4 + case 3.5 forward and 0.5 backward

* Backward computation and test coverage

* numpy-compatible mean (apache#14859)

* [numpy] Some np ops for d2l (apache#14924)

* Add np transpose

More ops and namespaces for submodules

Add relu and sigmoid

Add reshape

Fix symbolic name mismatch

Add maximum and minimum

* Add convenience fluent method

* Add ndarray.item()

* Fix CI

* Fix lint

* Fix lint

* Fix reshape gpu

* Add example

* Remove python notebook outputs

* Remove notebook output

* Add one more example

* [numpy] Refactor np modules (apache#14989)

* Refactor

* Initial refactoring

* Fix notebook

* Move numpy op check from backend to frontend

* Add homogeneous ndarray check

* Fix grouping inhomogeneous types of symbols

* Improve error handling of different types of symbols as outputs

* Fix test

* Fix numpy test

* Fix ci

* Try to fix gpu ci failure

* [numpy] Refactor np module (example runs through) (apache#15055)

* Refactor notebook

* notebook working with hybrid block

* More refactoring

* Remove unnecessary use_np_compat

* Use class decorator to initialize numpy ndarrays in parameter.py

* Clear notebook outputs

* Improve np decorator

* Remove npe op from optimizer

* Fix CI

* Fix functools.wraps issue in Python2

* Fix ci

* Change np_compat to np_shape

* Temporarily disable test_amp

* Numpy-compatible stack (apache#15027)

* numpy stack

* migrate to use_np_shape

* Numpy Unary Ops (apache#15010)

* Unary Ops

* new version of unit tests

* [numpy] Fix np branch after rebase (apache#15086)

* Add np_array semantics for Gluon

Fix notebook

Fix sanity

Fix gluon deferred infer shape

Add np.random.uniform

Add random normal

Add boolean comparison ops

Add np.ndarray indexing

Reformat test ndarray indexing

Fix unit tests

Add one more test of indexing

Fix sanity

Enable amp test

Add np.arange

Revert cython unit test to ctypes

Delete unnecessary use_np_shape decorator from test

Rebase with numpy branch

support range as index

Fix python2 range type check

Add argmax

Disable clojure test

* Fix ci

* Add np.linalg.norm for ord='fro'

* Fix pylint

* numpy concatenate (apache#15104)

* [WIP][numpy] Fix for D2L Chapters 2/3/4 (apache#15139)

* Fix

* Fix linear regression gluon

* More fix

* Fix pylint

* Fix for chapter 4

* Add np.add mul div mod pow sub and shuffle

* Fix model selection, underfitting, overfitting

* Fix weight decay

* Fix dropout

* Fix

* Fix chapter 4

* [numpy] Fix d2l performance regression (apache#15173)

* Add np array adapter decorator for layers

* Fix performance regression caused by too many conversions between nd.NDArray and np.ndarray

* Fix pylint

* Fix test backward compatibility issue

* Fix test_lambda

* Fix (apache#15188)

* fix for chapter6 conv nn (apache#15224)

* [numpy] Fix d2l chapter8 (apache#15237)

* Add np op doc

* Fix several issues

* Add a N-D dot b 2D support

* Simplify array creation api

* Add swapaxes

* Fix rnn gluon

* More fix

* Fix pylint

* Delete

* Fix mp windows

* fix for ch11 (apache#15244)

* Numpy-compatible split (apache#15049)

* numpy split

* numpy split

* unit test

* unit test

* [numpy] [DO NOT MERGE] Fix d2l chapters 9 and 13 (apache#15246)

* Add npx batch_dot and topk

* Text embedding uses numpy

* Fix SoftmaxCrossEntropyLoss with np

* Fix sentiment cnn

* Fix pylint

* Fix dot attention

* Fix seq2seq attention

* Add np.tile

* Fix transformer

* Fix ci

* Fix ci and rebase

* [numpy] Fix d2l chapter 5 (apache#15264)

* Fix parameter initializer

* Add np.save and np.load

* Fix read-write

* Fix lint

* Numpy compatible max (apache#15161)

* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check

* Numpy compatible multinomial (apache#15219)

* draft of multinomial

* rename to more concise name

* finish shape

* complete the forward function

* complete forward without handle 0 dimension & scalar

* handle 0 dimension

* add new line

* fix lint

* fix the build error

* fix lint

* finish unit test

* change the registration

* make multinomial support pvals as mx.ndarray

* delete newline

* fix lint error

* support input as list, mx.ndarray, np.ndarray & unit test

* fix lint

* fix the include error

* fix lint

* refactor & pass the tensor instead of tuple to kernel

* fix lint

* updata the doc

* address the comment

* Numpy compatible linspace (apache#15256)

* draft

* finish linspace implementation

* finish linspace

* delete newline

* fix pylint

* add more unit test

* address comment

* add more test case

* disable too-many-arguments

* resolve confliction

* add ctx

* numpy-compatible cumsum (apache#15309)

* [numpy] Misc fix for other chapters (apache#15332)

* Add np.prod

* Fix ndarray.reshape accepting positional integers as arguments

* Rebase

* Fix rebase error

* Add np.ndarray.flatten

* Fix

* Add broadcast_to

* Add meshgrid and broadcast_arrays

* Fix sin, cos, sinh, cosh not supporting scalars

* Add more unary ops supporting python scalars

* Fix

* Fix

* Fix ci

* Fix sanity

* [numpy] Change d2l chapters cv and gan to use numpy (apache#15368)

* Change op name style to lower case underscore

* Add ops under image to npx

* Add image submodule to npx

* Fix split_and_load use np

* Fix fine tuning

* Fix bbox and anchor

* Fix odd

* Fix ssd and rcnn

* Remove restriction on binary element-wise scalar

* Fix gan

* Fix sanity

* Try to fix website build failure

* Add npx.random.seed

* Fix doc

* add doc for multinomial, dot, cumsum, clip, abs, exp, arctan (apache#15386)

* [numpy] Fix several places in numpy (apache#15398)

* Fix

* More fix

* [numpy] fix cython (apache#15418)

* add cython support for numpy

* stay with original API for backward compatibility

* fix after rebase

* get rid of coverage in clang60 mkldnn

* fix lint issues

* fix flaky test and get rid of extra print

* remove numpy examples

* revert apache#15309 apache#15256 apache#15219 apache#15161

* remove numpy docs

* remove changes to contrib/text/embedding.py

* remove numpy changes to gluon peripherals

* Revert "remove numpy docs"

This reverts commit c104695.

* get rid of most operators

* Revert "get rid of coverage in clang60 mkldnn"

This reverts commit 77dc905.

* remove np-compatible from mxnet.image mxnet.initializer

* address comments
access2rohit pushed a commit to access2rohit/incubator-mxnet that referenced this pull request Sep 25, 2019
* [Do not review] [Do not merge] New numpy-compatible sum (apache#14739)

* Add numpy namespace and initial impl of np.sum (not complete)

* Clean up

* Fix import error

* numpy sum

* add test and backward data type support

* add license to test_numpy_op.py

* improve test to reduce flakiness

* fix sanity build

* extra numeric test and imperative test

* add error message for initial argument

* [numpy] Infra for supporting numpy ops in imperative mode and Gluon APIs (apache#14758)

* Infra of new ndarray and symbol types for numpy operators

* Rename

* Fix import problem

* Refactor

* Remove redundant code

* Add docstring

* More on numpy ndarray and symbol

* Override unimplemented methdos for ndarray and _NumpySymbol

* Fix built-in methods of ndarray and _NumpySymbol

* Fix test and sanity check

* Fix pylint

* Address cr comments

* Add unit tests for ndarray and _NumpySymbol

* Add _true_divide

* Fix gpu build

* Add future import division

* More correct way of checking if an output is from a np compat op

* Fix gpu build

* Fix output ndarray/symbol types with at least one new ndarray/symbol

* Modify true_divide doc

* Fix flaky copying zero-size arrays via gpus

* Fix zero size in gluon hybridize and zeros/ones symbol not creating new symbol type

* Fix doc

* Enable np op compat check with name prefix (apache#14897)

* [numpy] Numpy dot (apache#14831)

* Numpy Dot case 1-4 + case 3.5 forward and 0.5 backward

* Backward computation and test coverage

* numpy-compatible mean (apache#14859)

* [numpy] Some np ops for d2l (apache#14924)

* Add np transpose

More ops and namespaces for submodules

Add relu and sigmoid

Add reshape

Fix symbolic name mismatch

Add maximum and minimum

* Add convenience fluent method

* Add ndarray.item()

* Fix CI

* Fix lint

* Fix lint

* Fix reshape gpu

* Add example

* Remove python notebook outputs

* Remove notebook output

* Add one more example

* [numpy] Refactor np modules (apache#14989)

* Refactor

* Initial refactoring

* Fix notebook

* Move numpy op check from backend to frontend

* Add homogeneous ndarray check

* Fix grouping inhomogeneous types of symbols

* Improve error handling of different types of symbols as outputs

* Fix test

* Fix numpy test

* Fix ci

* Try to fix gpu ci failure

* [numpy] Refactor np module (example runs through) (apache#15055)

* Refactor notebook

* notebook working with hybrid block

* More refactoring

* Remove unnecessary use_np_compat

* Use class decorator to initialize numpy ndarrays in parameter.py

* Clear notebook outputs

* Improve np decorator

* Remove npe op from optimizer

* Fix CI

* Fix functools.wraps issue in Python2

* Fix ci

* Change np_compat to np_shape

* Temporarily disable test_amp

* Numpy-compatible stack (apache#15027)

* numpy stack

* migrate to use_np_shape

* Numpy Unary Ops (apache#15010)

* Unary Ops

* new version of unit tests

* [numpy] Fix np branch after rebase (apache#15086)

* Add np_array semantics for Gluon

Fix notebook

Fix sanity

Fix gluon deferred infer shape

Add np.random.uniform

Add random normal

Add boolean comparison ops

Add np.ndarray indexing

Reformat test ndarray indexing

Fix unit tests

Add one more test of indexing

Fix sanity

Enable amp test

Add np.arange

Revert cython unit test to ctypes

Delete unnecessary use_np_shape decorator from test

Rebase with numpy branch

support range as index

Fix python2 range type check

Add argmax

Disable clojure test

* Fix ci

* Add np.linalg.norm for ord='fro'

* Fix pylint

* numpy concatenate (apache#15104)

* [WIP][numpy] Fix for D2L Chapters 2/3/4 (apache#15139)

* Fix

* Fix linear regression gluon

* More fix

* Fix pylint

* Fix for chapter 4

* Add np.add mul div mod pow sub and shuffle

* Fix model selection, underfitting, overfitting

* Fix weight decay

* Fix dropout

* Fix

* Fix chapter 4

* [numpy] Fix d2l performance regression (apache#15173)

* Add np array adapter decorator for layers

* Fix performance regression caused by too many conversions between nd.NDArray and np.ndarray

* Fix pylint

* Fix test backward compatibility issue

* Fix test_lambda

* Fix (apache#15188)

* fix for chapter6 conv nn (apache#15224)

* [numpy] Fix d2l chapter8 (apache#15237)

* Add np op doc

* Fix several issues

* Add a N-D dot b 2D support

* Simplify array creation api

* Add swapaxes

* Fix rnn gluon

* More fix

* Fix pylint

* Delete

* Fix mp windows

* fix for ch11 (apache#15244)

* Numpy-compatible split (apache#15049)

* numpy split

* numpy split

* unit test

* unit test

* [numpy] [DO NOT MERGE] Fix d2l chapters 9 and 13 (apache#15246)

* Add npx batch_dot and topk

* Text embedding uses numpy

* Fix SoftmaxCrossEntropyLoss with np

* Fix sentiment cnn

* Fix pylint

* Fix dot attention

* Fix seq2seq attention

* Add np.tile

* Fix transformer

* Fix ci

* Fix ci and rebase

* [numpy] Fix d2l chapter 5 (apache#15264)

* Fix parameter initializer

* Add np.save and np.load

* Fix read-write

* Fix lint

* Numpy compatible max (apache#15161)

* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check

* Numpy compatible multinomial (apache#15219)

* draft of multinomial

* rename to more concise name

* finish shape

* complete the forward function

* complete forward without handle 0 dimension & scalar

* handle 0 dimension

* add new line

* fix lint

* fix the build error

* fix lint

* finish unit test

* change the registration

* make multinomial support pvals as mx.ndarray

* delete newline

* fix lint error

* support input as list, mx.ndarray, np.ndarray & unit test

* fix lint

* fix the include error

* fix lint

* refactor & pass the tensor instead of tuple to kernel

* fix lint

* updata the doc

* address the comment

* Numpy compatible linspace (apache#15256)

* draft

* finish linspace implementation

* finish linspace

* delete newline

* fix pylint

* add more unit test

* address comment

* add more test case

* disable too-many-arguments

* resolve confliction

* add ctx

* numpy-compatible cumsum (apache#15309)

* [numpy] Misc fix for other chapters (apache#15332)

* Add np.prod

* Fix ndarray.reshape accepting positional integers as arguments

* Rebase

* Fix rebase error

* Add np.ndarray.flatten

* Fix

* Add broadcast_to

* Add meshgrid and broadcast_arrays

* Fix sin, cos, sinh, cosh not supporting scalars

* Add more unary ops supporting python scalars

* Fix

* Fix

* Fix ci

* Fix sanity

* [numpy] Change d2l chapters cv and gan to use numpy (apache#15368)

* Change op name style to lower case underscore

* Add ops under image to npx

* Add image submodule to npx

* Fix split_and_load use np

* Fix fine tuning

* Fix bbox and anchor

* Fix odd

* Fix ssd and rcnn

* Remove restriction on binary element-wise scalar

* Fix gan

* Fix sanity

* Try to fix website build failure

* Add npx.random.seed

* Fix doc

* add doc for multinomial, dot, cumsum, clip, abs, exp, arctan (apache#15386)

* [numpy] Fix several places in numpy (apache#15398)

* Fix

* More fix

* [numpy] fix cython (apache#15418)

* add cython support for numpy

* stay with original API for backward compatibility

* fix after rebase

* get rid of coverage in clang60 mkldnn

* fix lint issues

* fix flaky test and get rid of extra print

* remove numpy examples

* revert apache#15309 apache#15256 apache#15219 apache#15161

* remove numpy docs

* remove changes to contrib/text/embedding.py

* remove numpy changes to gluon peripherals

* Revert "remove numpy docs"

This reverts commit c104695.

* get rid of most operators

* Revert "get rid of coverage in clang60 mkldnn"

This reverts commit 77dc905.

* remove np-compatible from mxnet.image mxnet.initializer

* address comments
access2rohit pushed a commit to access2rohit/incubator-mxnet that referenced this pull request Sep 25, 2019
* [Do not review] [Do not merge] New numpy-compatible sum (apache#14739)

* Add numpy namespace and initial impl of np.sum (not complete)

* Clean up

* Fix import error

* numpy sum

* add test and backward data type support

* add license to test_numpy_op.py

* improve test to reduce flakiness

* fix sanity build

* extra numeric test and imperative test

* add error message for initial argument

* [numpy] Infra for supporting numpy ops in imperative mode and Gluon APIs (apache#14758)

* Infra of new ndarray and symbol types for numpy operators

* Rename

* Fix import problem

* Refactor

* Remove redundant code

* Add docstring

* More on numpy ndarray and symbol

* Override unimplemented methdos for ndarray and _NumpySymbol

* Fix built-in methods of ndarray and _NumpySymbol

* Fix test and sanity check

* Fix pylint

* Address cr comments

* Add unit tests for ndarray and _NumpySymbol

* Add _true_divide

* Fix gpu build

* Add future import division

* More correct way of checking if an output is from a np compat op

* Fix gpu build

* Fix output ndarray/symbol types with at least one new ndarray/symbol

* Modify true_divide doc

* Fix flaky copying zero-size arrays via gpus

* Fix zero size in gluon hybridize and zeros/ones symbol not creating new symbol type

* Fix doc

* Enable np op compat check with name prefix (apache#14897)

* [numpy] Numpy dot (apache#14831)

* Numpy Dot case 1-4 + case 3.5 forward and 0.5 backward

* Backward computation and test coverage

* numpy-compatible mean (apache#14859)

* [numpy] Some np ops for d2l (apache#14924)

* Add np transpose

More ops and namespaces for submodules

Add relu and sigmoid

Add reshape

Fix symbolic name mismatch

Add maximum and minimum

* Add convenience fluent method

* Add ndarray.item()

* Fix CI

* Fix lint

* Fix lint

* Fix reshape gpu

* Add example

* Remove python notebook outputs

* Remove notebook output

* Add one more example

* [numpy] Refactor np modules (apache#14989)

* Refactor

* Initial refactoring

* Fix notebook

* Move numpy op check from backend to frontend

* Add homogeneous ndarray check

* Fix grouping inhomogeneous types of symbols

* Improve error handling of different types of symbols as outputs

* Fix test

* Fix numpy test

* Fix ci

* Try to fix gpu ci failure

* [numpy] Refactor np module (example runs through) (apache#15055)

* Refactor notebook

* notebook working with hybrid block

* More refactoring

* Remove unnecessary use_np_compat

* Use class decorator to initialize numpy ndarrays in parameter.py

* Clear notebook outputs

* Improve np decorator

* Remove npe op from optimizer

* Fix CI

* Fix functools.wraps issue in Python2

* Fix ci

* Change np_compat to np_shape

* Temporarily disable test_amp

* Numpy-compatible stack (apache#15027)

* numpy stack

* migrate to use_np_shape

* Numpy Unary Ops (apache#15010)

* Unary Ops

* new version of unit tests

* [numpy] Fix np branch after rebase (apache#15086)

* Add np_array semantics for Gluon

Fix notebook

Fix sanity

Fix gluon deferred infer shape

Add np.random.uniform

Add random normal

Add boolean comparison ops

Add np.ndarray indexing

Reformat test ndarray indexing

Fix unit tests

Add one more test of indexing

Fix sanity

Enable amp test

Add np.arange

Revert cython unit test to ctypes

Delete unnecessary use_np_shape decorator from test

Rebase with numpy branch

support range as index

Fix python2 range type check

Add argmax

Disable clojure test

* Fix ci

* Add np.linalg.norm for ord='fro'

* Fix pylint

* numpy concatenate (apache#15104)

* [WIP][numpy] Fix for D2L Chapters 2/3/4 (apache#15139)

* Fix

* Fix linear regression gluon

* More fix

* Fix pylint

* Fix for chapter 4

* Add np.add mul div mod pow sub and shuffle

* Fix model selection, underfitting, overfitting

* Fix weight decay

* Fix dropout

* Fix

* Fix chapter 4

* [numpy] Fix d2l performance regression (apache#15173)

* Add np array adapter decorator for layers

* Fix performance regression caused by too many conversions between nd.NDArray and np.ndarray

* Fix pylint

* Fix test backward compatibility issue

* Fix test_lambda

* Fix (apache#15188)

* fix for chapter6 conv nn (apache#15224)

* [numpy] Fix d2l chapter8 (apache#15237)

* Add np op doc

* Fix several issues

* Add a N-D dot b 2D support

* Simplify array creation api

* Add swapaxes

* Fix rnn gluon

* More fix

* Fix pylint

* Delete

* Fix mp windows

* fix for ch11 (apache#15244)

* Numpy-compatible split (apache#15049)

* numpy split

* numpy split

* unit test

* unit test

* [numpy] [DO NOT MERGE] Fix d2l chapters 9 and 13 (apache#15246)

* Add npx batch_dot and topk

* Text embedding uses numpy

* Fix SoftmaxCrossEntropyLoss with np

* Fix sentiment cnn

* Fix pylint

* Fix dot attention

* Fix seq2seq attention

* Add np.tile

* Fix transformer

* Fix ci

* Fix ci and rebase

* [numpy] Fix d2l chapter 5 (apache#15264)

* Fix parameter initializer

* Add np.save and np.load

* Fix read-write

* Fix lint

* Numpy compatible max (apache#15161)

* numpy amax

* weird cu file diff

* fix the unit test error

* fix gpu bug

* minor fix

* fix lint

* remove scalar value check

* fix the bug on unit test

* fix the case () that breaks the kernel launch

* add zero dimension unit test

* revert the tuple change

* use mshadow maximum

* remove test zero

* change the macro for now

* change the cuda to use mashadow op

* fix the broadcast_reduce_op_value.cu wrong kernel

* add more logic in shape to detect the invalid situation

* change back to type swtich

* change to as_nd_ndarray

* add missing @npx.use_np_shape

* retrigger CI

* address the comment

* undo algorithm import

* remove the numeric gradient check

* Numpy compatible multinomial (apache#15219)

* draft of multinomial

* rename to more concise name

* finish shape

* complete the forward function

* complete forward without handle 0 dimension & scalar

* handle 0 dimension

* add new line

* fix lint

* fix the build error

* fix lint

* finish unit test

* change the registration

* make multinomial support pvals as mx.ndarray

* delete newline

* fix lint error

* support input as list, mx.ndarray, np.ndarray & unit test

* fix lint

* fix the include error

* fix lint

* refactor & pass the tensor instead of tuple to kernel

* fix lint

* updata the doc

* address the comment

* Numpy compatible linspace (apache#15256)

* draft

* finish linspace implementation

* finish linspace

* delete newline

* fix pylint

* add more unit test

* address comment

* add more test case

* disable too-many-arguments

* resolve confliction

* add ctx

* numpy-compatible cumsum (apache#15309)

* [numpy] Misc fix for other chapters (apache#15332)

* Add np.prod

* Fix ndarray.reshape accepting positional integers as arguments

* Rebase

* Fix rebase error

* Add np.ndarray.flatten

* Fix

* Add broadcast_to

* Add meshgrid and broadcast_arrays

* Fix sin, cos, sinh, cosh not supporting scalars

* Add more unary ops supporting python scalars

* Fix

* Fix

* Fix ci

* Fix sanity

* [numpy] Change d2l chapters cv and gan to use numpy (apache#15368)

* Change op name style to lower case underscore

* Add ops under image to npx

* Add image submodule to npx

* Fix split_and_load use np

* Fix fine tuning

* Fix bbox and anchor

* Fix odd

* Fix ssd and rcnn

* Remove restriction on binary element-wise scalar

* Fix gan

* Fix sanity

* Try to fix website build failure

* Add npx.random.seed

* Fix doc

* add doc for multinomial, dot, cumsum, clip, abs, exp, arctan (apache#15386)

* [numpy] Fix several places in numpy (apache#15398)

* Fix

* More fix

* [numpy] fix cython (apache#15418)

* add cython support for numpy

* stay with original API for backward compatibility

* fix after rebase

* get rid of coverage in clang60 mkldnn

* fix lint issues

* fix flaky test and get rid of extra print

* remove numpy examples

* revert apache#15309 apache#15256 apache#15219 apache#15161

* remove numpy docs

* remove changes to contrib/text/embedding.py

* remove numpy changes to gluon peripherals

* Revert "remove numpy docs"

This reverts commit c104695.

* get rid of most operators

* Revert "get rid of coverage in clang60 mkldnn"

This reverts commit 77dc905.

* remove np-compatible from mxnet.image mxnet.initializer

* address comments
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
Numpy Operator pr-awaiting-review PR is waiting for code review
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants