Skip to content

Commit

Permalink
[SPARK-10299][ML] word2vec should allow users to specify the window size
Browse files Browse the repository at this point in the history
Currently word2vec has the window hard coded at 5, some users may want different sizes (for example if using on n-gram input or similar). User request comes from http://stackoverflow.com/questions/32231975/spark-word2vec-window-size .

Author: Holden Karau <holden@us.ibm.com>
Author: Holden Karau <holden@pigscanfly.ca>

Closes #8513 from holdenk/SPARK-10299-word2vec-should-allow-users-to-specify-the-window-size.
  • Loading branch information
holdenk authored and srowen committed Dec 9, 2015
1 parent 6e1c55e commit 22b9a87
Show file tree
Hide file tree
Showing 3 changed files with 65 additions and 4 deletions.
15 changes: 15 additions & 0 deletions mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,17 @@ private[feature] trait Word2VecBase extends Params
/** @group getParam */
def getVectorSize: Int = $(vectorSize)

/**
* The window size (context words from [-window, window]) default 5.
* @group expertParam
*/
final val windowSize = new IntParam(
this, "windowSize", "the window size (context words from [-window, window])")
setDefault(windowSize -> 5)

/** @group expertGetParam */
def getWindowSize: Int = $(windowSize)

/**
* Number of partitions for sentences of words.
* Default: 1
Expand Down Expand Up @@ -106,6 +117,9 @@ final class Word2Vec(override val uid: String) extends Estimator[Word2VecModel]
/** @group setParam */
def setVectorSize(value: Int): this.type = set(vectorSize, value)

/** @group expertSetParam */
def setWindowSize(value: Int): this.type = set(windowSize, value)

/** @group setParam */
def setStepSize(value: Double): this.type = set(stepSize, value)

Expand All @@ -131,6 +145,7 @@ final class Word2Vec(override val uid: String) extends Estimator[Word2VecModel]
.setNumPartitions($(numPartitions))
.setSeed($(seed))
.setVectorSize($(vectorSize))
.setWindowSize($(windowSize))
.fit(input)
copyValues(new Word2VecModel(uid, wordVectors).setParent(this))
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,15 @@ class Word2Vec extends Serializable with Logging {
this
}

/**
* Sets the window of words (default: 5)
*/
@Since("1.6.0")
def setWindowSize(window: Int): this.type = {
this.window = window
this
}

/**
* Sets minCount, the minimum number of times a token must appear to be included in the word2vec
* model's vocabulary (default: 5).
Expand All @@ -141,7 +150,7 @@ class Word2Vec extends Serializable with Logging {
private val MAX_SENTENCE_LENGTH = 1000

/** context words from [-window, window] */
private val window = 5
private var window = 5

private var trainWordsCount = 0
private var vocabSize = 0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@ class Word2VecSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
}

test("Word2Vec") {
val sqlContext = new SQLContext(sc)

val sqlContext = this.sqlContext
import sqlContext.implicits._

val sentence = "a b " * 100 + "a c " * 10
Expand Down Expand Up @@ -77,7 +78,7 @@ class Word2VecSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul

test("getVectors") {

val sqlContext = new SQLContext(sc)
val sqlContext = this.sqlContext
import sqlContext.implicits._

val sentence = "a b " * 100 + "a c " * 10
Expand Down Expand Up @@ -118,7 +119,7 @@ class Word2VecSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul

test("findSynonyms") {

val sqlContext = new SQLContext(sc)
val sqlContext = this.sqlContext
import sqlContext.implicits._

val sentence = "a b " * 100 + "a c " * 10
Expand All @@ -141,7 +142,43 @@ class Word2VecSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
expectedSimilarity.zip(similarity).map {
case (expected, actual) => assert(math.abs((expected - actual) / expected) < 1E-5)
}
}

test("window size") {

val sqlContext = this.sqlContext
import sqlContext.implicits._

val sentence = "a q s t q s t b b b s t m s t m q " * 100 + "a c " * 10
val doc = sc.parallelize(Seq(sentence, sentence)).map(line => line.split(" "))
val docDF = doc.zip(doc).toDF("text", "alsotext")

val model = new Word2Vec()
.setVectorSize(3)
.setWindowSize(2)
.setInputCol("text")
.setOutputCol("result")
.setSeed(42L)
.fit(docDF)

val (synonyms, similarity) = model.findSynonyms("a", 6).map {
case Row(w: String, sim: Double) => (w, sim)
}.collect().unzip

// Increase the window size
val biggerModel = new Word2Vec()
.setVectorSize(3)
.setInputCol("text")
.setOutputCol("result")
.setSeed(42L)
.setWindowSize(10)
.fit(docDF)

val (synonymsLarger, similarityLarger) = model.findSynonyms("a", 6).map {
case Row(w: String, sim: Double) => (w, sim)
}.collect().unzip
// The similarity score should be very different with the larger window
assert(math.abs(similarity(5) - similarityLarger(5) / similarity(5)) > 1E-5)
}

test("Word2Vec read/write") {
Expand Down

0 comments on commit 22b9a87

Please sign in to comment.