Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-31703][SQL] Parquet RLE float/double are read incorrectly on big endian platforms #29419

Closed
wants to merge 2 commits into from
Closed

Conversation

tinhto-000
Copy link
Contributor

What changes were proposed in this pull request?

(back-porting from 9a3811d)

This PR fixes the issue introduced during SPARK-26985.

SPARK-26985 changes the putDoubles() and putFloats() methods to respect the platform's endian-ness. However, that causes the RLE paths in VectorizedRleValuesReader.java to read the RLE entries in parquet as BIG_ENDIAN on big endian platforms (i.e., as is), even though parquet data is always in little endian format.

The comments in WriteableColumnVector.java say those methods are used for "ieee formatted doubles in platform native endian" (or floats), but since the data in parquet is always in little endian format, use of those methods appears to be inappropriate.

To demonstrate the problem with spark-shell:

import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
    
var data = Seq(
  (1.0, 0.1),
  (2.0, 0.2),
  (0.3, 3.0),
  (4.0, 4.0),
  (5.0, 5.0))
  
var df = spark.createDataFrame(data).write.mode(SaveMode.Overwrite).parquet("/tmp/data.parquet2")
var df2 = spark.read.parquet("/tmp/data.parquet2")
df2.show()

result:

+--------------------+--------------------+                                     
|                  _1|                  _2|
+--------------------+--------------------+
|           3.16E-322|-1.54234871366845...|
|         2.0553E-320|         2.0553E-320|
|          2.561E-320|          2.561E-320|
|4.66726145843124E-62|         1.0435E-320|
|        3.03865E-319|-1.54234871366757...|
+--------------------+--------------------+

Also tests in ParquetIOSuite that involve float/double data would fail, e.g.,

  • basic data types (without binary)
  • read raw Parquet file

/examples/src/main/python/mllib/isotonic_regression_example.py would fail as well.

Purposed code change is to add putDoublesLittleEndian() and putFloatsLittleEndian() methods for parquet to invoke, just like the existing putIntsLittleEndian() and putLongsLittleEndian(). On little endian platforms they would call putDoubles() and putFloats(), on big endian they would read the entries as little endian like pre-SPARK-26985.

No new unit-test is introduced as the existing ones are actually sufficient.

Why are the changes needed?

RLE float/double data in parquet files will not be read back correctly on big endian platforms.

Does this PR introduce any user-facing change?

No

How was this patch tested?

All unit tests (mvn test) were ran and OK.

AngersZhuuuu and others added 2 commits August 12, 2020 12:23
…d in partition filters

We support partially push partition filters since SPARK-28169. We can also support partially push down data filters if it mixed in partition filters and data filters. For example:
```
spark.sql(
  s"""
     |CREATE TABLE t(i INT, p STRING)
     |USING parquet
     |PARTITIONED BY (p)""".stripMargin)

spark.range(0, 1000).selectExpr("id as col").createOrReplaceTempView("temp")
for (part <- Seq(1, 2, 3, 4)) {
  sql(s"""
         |INSERT OVERWRITE TABLE t PARTITION (p='$part')
         |SELECT col FROM temp""".stripMargin)
}

spark.sql("SELECT * FROM t WHERE  WHERE (p = '1' AND i = 1) OR (p = '2' and i = 2)").explain()
```

We can also push down ```i = 1 or i = 2 ```

Extract more data filter to FileSourceScanExec

NO

Added UT

Closes #29406 from AngersZhuuuu/SPARK-32352.

Authored-by: angerszhu <angers.zhu@gmail.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…ig endian platforms

### What changes were proposed in this pull request?
This PR fixes the issue introduced during SPARK-26985.

SPARK-26985 changes the `putDoubles()` and `putFloats()` methods to respect the platform's endian-ness.  However, that causes the RLE paths in VectorizedRleValuesReader.java to read the RLE entries in parquet as BIG_ENDIAN on big endian platforms (i.e., as is), even though parquet data is always in little endian format.

The comments in `WriteableColumnVector.java` say those methods are used for "ieee formatted doubles in platform native endian" (or floats), but since the data in parquet is always in little endian format, use of those methods appears to be inappropriate.

To demonstrate the problem with spark-shell:

```scala
import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.types._

var data = Seq(
  (1.0, 0.1),
  (2.0, 0.2),
  (0.3, 3.0),
  (4.0, 4.0),
  (5.0, 5.0))

var df = spark.createDataFrame(data).write.mode(SaveMode.Overwrite).parquet("/tmp/data.parquet2")
var df2 = spark.read.parquet("/tmp/data.parquet2")
df2.show()
```

result:

```scala
+--------------------+--------------------+
|                  _1|                  _2|
+--------------------+--------------------+
|           3.16E-322|-1.54234871366845...|
|         2.0553E-320|         2.0553E-320|
|          2.561E-320|          2.561E-320|
|4.66726145843124E-62|         1.0435E-320|
|        3.03865E-319|-1.54234871366757...|
+--------------------+--------------------+
```

Also tests in ParquetIOSuite that involve float/double data would fail, e.g.,

- basic data types (without binary)
- read raw Parquet file

/examples/src/main/python/mllib/isotonic_regression_example.py would fail as well.

Purposed code change is to add `putDoublesLittleEndian()` and `putFloatsLittleEndian()` methods for parquet to invoke, just like the existing `putIntsLittleEndian()` and `putLongsLittleEndian()`.  On little endian platforms they would call `putDoubles()` and `putFloats()`, on big endian they would read the entries as little endian like pre-SPARK-26985.

No new unit-test is introduced as the existing ones are actually sufficient.

### Why are the changes needed?
RLE float/double data in parquet files will not be read back correctly on big endian platforms.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
All unit tests (mvn test) were ran and OK.

Closes #29383 from tinhto-000/SPARK-31703.

Authored-by: Tin Hang To <tinto@us.ibm.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
(cherry picked from commit a418548)
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
@cloud-fan
Copy link
Contributor

ok to test

@SparkQA
Copy link

SparkQA commented Aug 12, 2020

Test build #127387 has finished for PR 29419 at commit a962b56.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@cloud-fan
Copy link
Contributor

thanks, merging to 2.4!

cloud-fan pushed a commit that referenced this pull request Aug 13, 2020
…ig endian platforms

### What changes were proposed in this pull request?
(back-porting from 9a3811d)

This PR fixes the issue introduced during SPARK-26985.

SPARK-26985 changes the `putDoubles()` and `putFloats()` methods to respect the platform's endian-ness.  However, that causes the RLE paths in VectorizedRleValuesReader.java to read the RLE entries in parquet as BIG_ENDIAN on big endian platforms (i.e., as is), even though parquet data is always in little endian format.

The comments in `WriteableColumnVector.java` say those methods are used for "ieee formatted doubles in platform native endian" (or floats), but since the data in parquet is always in little endian format, use of those methods appears to be inappropriate.

To demonstrate the problem with spark-shell:

```scala
import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.types._

var data = Seq(
  (1.0, 0.1),
  (2.0, 0.2),
  (0.3, 3.0),
  (4.0, 4.0),
  (5.0, 5.0))

var df = spark.createDataFrame(data).write.mode(SaveMode.Overwrite).parquet("/tmp/data.parquet2")
var df2 = spark.read.parquet("/tmp/data.parquet2")
df2.show()
```

result:

```scala
+--------------------+--------------------+
|                  _1|                  _2|
+--------------------+--------------------+
|           3.16E-322|-1.54234871366845...|
|         2.0553E-320|         2.0553E-320|
|          2.561E-320|          2.561E-320|
|4.66726145843124E-62|         1.0435E-320|
|        3.03865E-319|-1.54234871366757...|
+--------------------+--------------------+
```

Also tests in ParquetIOSuite that involve float/double data would fail, e.g.,

- basic data types (without binary)
- read raw Parquet file

/examples/src/main/python/mllib/isotonic_regression_example.py would fail as well.

Purposed code change is to add `putDoublesLittleEndian()` and `putFloatsLittleEndian()` methods for parquet to invoke, just like the existing `putIntsLittleEndian()` and `putLongsLittleEndian()`.  On little endian platforms they would call `putDoubles()` and `putFloats()`, on big endian they would read the entries as little endian like pre-SPARK-26985.

No new unit-test is introduced as the existing ones are actually sufficient.

### Why are the changes needed?
RLE float/double data in parquet files will not be read back correctly on big endian platforms.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
All unit tests (mvn test) were ran and OK.

Closes #29419 from tinhto-000/SPARK-31703-2.4.

Lead-authored-by: Tin Hang To <tinto@us.ibm.com>
Co-authored-by: angerszhu <angers.zhu@gmail.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
@cloud-fan cloud-fan closed this Aug 13, 2020
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants