Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-48759][SQL] Add migration doc for CREATE TABLE AS SELECT behavior change behavior change since Spark 3.4 #47152

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/sql-migration-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,7 @@ license: |
- Since Spark 3.4, `BinaryType` is not supported in CSV datasource. In Spark 3.3 or earlier, users can write binary columns in CSV datasource, but the output content in CSV files is `Object.toString()` which is meaningless; meanwhile, if users read CSV tables with binary columns, Spark will throw an `Unsupported type: binary` exception.
- Since Spark 3.4, bloom filter joins are enabled by default. To restore the legacy behavior, set `spark.sql.optimizer.runtime.bloomFilter.enabled` to `false`.
- Since Spark 3.4, when schema inference on external Parquet files, INT64 timestamps with annotation `isAdjustedToUTC=false` will be inferred as TimestampNTZ type instead of Timestamp type. To restore the legacy behavior, set `spark.sql.parquet.inferTimestampNTZ.enabled` to `false`.
- Since Spark 3.4, the behavior for `CREATE TABLE AS SELECT ...` is changed from OVERWRITE to APPEND when `spark.sql.legacy.allowNonEmptyLocationInCTAS` is set to `true`. Users are recommended to avoid CTAS with a non-empty table location.

## Upgrading from Spark SQL 3.2 to 3.3

Expand Down