Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SQL] JavaDoc update for various DataFrame functions. #5935

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions sql/core/src/main/scala/org/apache/spark/sql/Column.scala
Original file line number Diff line number Diff line change
Expand Up @@ -84,14 +84,14 @@ class Column(protected[sql] val expr: Expression) extends Logging {

/**
* Inversion of boolean expression, i.e. NOT.
* {{
* {{{
* // Scala: select rows that are not active (isActive === false)
* df.filter( !df("isActive") )
*
* // Java:
* import static org.apache.spark.sql.functions.*;
* df.filter( not(df.col("isActive")) );
* }}
* }}}
*
* @group expr_ops
*/
Expand Down
16 changes: 8 additions & 8 deletions sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala
Original file line number Diff line number Diff line change
Expand Up @@ -681,11 +681,11 @@ class DataFrame private[sql](

/**
* (Scala-specific) Aggregates on the entire [[DataFrame]] without groups.
* {{
* {{{
* // df.agg(...) is a shorthand for df.groupBy().agg(...)
* df.agg("age" -> "max", "salary" -> "avg")
* df.groupBy().agg("age" -> "max", "salary" -> "avg")
* }}
* }}}
* @group dfops
*/
def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame = {
Expand All @@ -694,33 +694,33 @@ class DataFrame private[sql](

/**
* (Scala-specific) Aggregates on the entire [[DataFrame]] without groups.
* {{
* {{{
* // df.agg(...) is a shorthand for df.groupBy().agg(...)
* df.agg(Map("age" -> "max", "salary" -> "avg"))
* df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
* }}
* }}}
* @group dfops
*/
def agg(exprs: Map[String, String]): DataFrame = groupBy().agg(exprs)

/**
* (Java-specific) Aggregates on the entire [[DataFrame]] without groups.
* {{
* {{{
* // df.agg(...) is a shorthand for df.groupBy().agg(...)
* df.agg(Map("age" -> "max", "salary" -> "avg"))
* df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
* }}
* }}}
* @group dfops
*/
def agg(exprs: java.util.Map[String, String]): DataFrame = groupBy().agg(exprs)

/**
* Aggregates on the entire [[DataFrame]] without groups.
* {{
* {{{
* // df.agg(...) is a shorthand for df.groupBy().agg(...)
* df.agg(max($"age"), avg($"salary"))
* df.groupBy().agg(max($"age"), avg($"salary"))
* }}
* }}}
* @group dfops
*/
@scala.annotation.varargs
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
StatFunctions.calculateCov(df, Seq(col1, col2))
}

/*
/**
* Calculates the correlation of two columns of a DataFrame. Currently only supports the Pearson
* Correlation Coefficient. For Spearman Correlation, consider using RDD methods found in
* MLlib's Statistics.
Expand Down Expand Up @@ -75,7 +75,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
* each row.
* @param col2 The name of the second column. Distinct items will make the column names
* of the DataFrame.
* @return A Local DataFrame containing the table
* @return A DataFrame containing for the contingency table.
*/
def crosstab(col1: String, col2: String): DataFrame = {
StatFunctions.crossTabulate(df, col1, col2)
Expand Down Expand Up @@ -110,14 +110,25 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
}

/**
* Python friendly implementation for `freqItems`
* (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the
* frequent element count algorithm described in
* [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]].
*
* @param cols the names of the columns to search frequent items in.
* @return A Local DataFrame with the Array of frequent items for each column.
*/
def freqItems(cols: Seq[String], support: Double): DataFrame = {
FrequentItems.singlePassFreqItems(df, cols, support)
}

/**
* Python friendly implementation for `freqItems` with a default `support` of 1%.
* (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the
* frequent element count algorithm described in
* [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]].
* Uses a `default` support of 1%.
*
* @param cols the names of the columns to search frequent items in.
* @return A Local DataFrame with the Array of frequent items for each column.
*/
def freqItems(cols: Seq[String]): DataFrame = {
FrequentItems.singlePassFreqItems(df, cols, 0.01)
Expand Down
14 changes: 7 additions & 7 deletions sql/core/src/main/scala/org/apache/spark/sql/functions.scala
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ import scala.reflect.runtime.universe.{TypeTag, typeTag}

import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.catalyst.analysis.{UnresolvedAttribute, UnresolvedFunction, Star}
import org.apache.spark.sql.catalyst.analysis.{UnresolvedFunction, Star}
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.mathfuncs._
import org.apache.spark.sql.types._
Expand Down Expand Up @@ -86,21 +86,21 @@ object functions {

/**
* Returns a sort expression based on ascending order of the column.
* {{
* {{{
* // Sort by dept in ascending order, and then age in descending order.
* df.sort(asc("dept"), desc("age"))
* }}
* }}}
*
* @group sort_funcs
*/
def asc(columnName: String): Column = Column(columnName).asc

/**
* Returns a sort expression based on the descending order of the column.
* {{
* {{{
* // Sort by dept in ascending order, and then age in descending order.
* df.sort(asc("dept"), desc("age"))
* }}
* }}}
*
* @group sort_funcs
*/
Expand Down Expand Up @@ -353,13 +353,13 @@ object functions {

/**
* Inversion of boolean expression, i.e. NOT.
* {{
* {{{
* // Scala: select rows that are not active (isActive === false)
* df.filter( !df("isActive") )
*
* // Java:
* df.filter( not(df.col("isActive")) );
* }}
* }}}
*
* @group normal_funcs
*/
Expand Down