Skip to content

Commit

Permalink
[CONTRIB] PopenPoolExecutor
Browse files Browse the repository at this point in the history
PopenPoolExecutor implements a ProcessPoolExecutor backed by popen.

- Only handles invoking functions in tvm namespace.
- Unlike multiprocessing, does not require __main__ block,
  which means it can directly run on jupyter notebook.
- Come with timeout and fault tolerant support to timeout
  long running jobs, and restart the process when an error happens.

Recommended usage: it is recommended to create a pool and reuse
it in a long running job(e.g. autotuning) so that the process
are reused when possible.
  • Loading branch information
tqchen committed Nov 23, 2020
1 parent 5697440 commit 6f989e7
Show file tree
Hide file tree
Showing 4 changed files with 532 additions and 0 deletions.
329 changes: 329 additions & 0 deletions python/tvm/contrib/popen_pool.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""Multiprocessing via Popen.
This module provides a multi-processing pool backed by Popen.
with additional timeout support.
"""
import os
import sys
import struct
import threading
import subprocess
import concurrent.futures
from enum import IntEnum
from collections import namedtuple
import pickle


def kill_child_processes(pid):
"""Kill all child processes recursively for a given pid.
Parameters
----------
pid : int
The given parameter id.
"""
# pylint: disable=import-outside-toplevel
import psutil

try:
parent = psutil.Process(pid)
except psutil.NoSuchProcess:
return

for process in parent.children(recursive=True):
try:
process.kill()
except psutil.NoSuchProcess:
pass


class StatusKind(IntEnum):
"""Running and return value status."""

RUNNING = 0
COMPLETE = 1
EXCEPTION = 2
TIMEOUT = 3


class MapResult(namedtuple("MapResult", ["status", "value"])):
"""Result of map_with_error_catching.
Parameters
----------
status : StatusKind
The status of the result.
value : Any
The result value.
"""

__slots__ = []


class PopenWorker:
"""A subprocess worker via Popen.
PopenWorker provides a low-level
API to interact with a separate process via Popen.
"""

def __init__(self):
self._proc = None

def __del__(self):
try:
self.kill()
except ImportError:
pass

def kill(self):
"""Kill the current running process and cleanup.
Note
----
The worker can start a new process when send is called again.
"""
if self._proc is not None:
# allow gracefully shutdown
try:
self._writer.close()
except IOError:
pass
try:
self._reader.close()
except IOError:
pass
# kill all child processes recurisvely
kill_child_processes(self._proc.pid)
try:
self._proc.kill()
except OSError:
pass
self._proc = None

def _start(self):
"""Start a new subprocess if nothing is available"""
if self._proc is not None:
return

# connect subprocess with a pair of pipes
main_read, worker_write = os.pipe()
worker_read, main_write = os.pipe()

cmd = [sys.executable, "-m", "tvm.exec.popen_worker"]
if sys.platform == "win32":
# pylint: disable=import-outside-toplevel
import msvcrt

worker_read_handle = msvcrt.get_osfhandle(worker_read)
worker_write_handle = msvcrt.get_osfhandle(worker_write)
os.set_handle_inheritable(worker_read_handle, True)
os.set_handle_inheritable(worker_write_handle, True)
cmd += [str(worker_read_handle), str(worker_write_handle)]
self._proc = subprocess.Popen(cmd, close_fds=False)
else:
cmd += [str(worker_read), str(worker_write)]
self._proc = subprocess.Popen(cmd, pass_fds=(worker_read, worker_write))

# close worker side of the pipe
os.close(worker_read)
os.close(worker_write)
self._reader = os.fdopen(main_read, "rb")
self._writer = os.fdopen(main_write, "wb")

def send(self, fn, args=(), kwargs=None, timeout=None):
"""Send a new function task fn(*args, **kwargs) to the subprocess.
Parameters
----------
fn : function
The function to be invoked.
args : list
Positional argument.
kwargs : dict
Keyword arguments
timeout : float
Timeout value when executing the function
Note
----
The caller must call recv before calling the next send in
order to make sure the timeout and child process exit
won't affect the later requests.
"""
# use cloud pickle
# pylint: disable=import-outside-toplevel
import cloudpickle

if self._proc is None:
self._start()
kwargs = {} if not kwargs else kwargs
data = cloudpickle.dumps((fn, args, kwargs, timeout), protocol=pickle.HIGHEST_PROTOCOL)
try:
self._writer.write(struct.pack("<i", len(data)))
self._writer.write(data)
self._writer.flush()
except IOError:
pass

def _child_process_error(self):
"""Raise a child process error."""
# kill and lazily restart the process in the next send.
self.kill()
return ChildProcessError("Subprocess terminated")

def recv(self):
"""Receive the result of the last send.
Returns
-------
result: object
The result of the last send.
Raises
------
ChildProcessError: if the child process exited abnormally.
TimeoutError: if timeout happens
Exception: if other exception happens during the execution.
"""
# pylint: disable=import-outside-toplevel
import cloudpickle

try:
len_data = self._reader.read(4)
except IOError:
raise self._child_process_error()

if len(len_data) == 0:
raise self._child_process_error()

try:
recv_bytes = struct.unpack("<i", len_data)[0]
status, value = cloudpickle.loads(self._reader.read(recv_bytes))
except IOError:
raise self._child_process_error()

if status == StatusKind.COMPLETE:
return value
if status == StatusKind.EXCEPTION:
raise value
assert status == StatusKind.TIMEOUT
# kill and lazily restart the process in the next send.
self.kill()
raise TimeoutError()


class PopenPoolExecutor:
"""An parallel executor backed by Popen processes.
Parameters
----------
max_worker : int
Maximum number of workers
timeout : float
Timeout value for each function submit.
"""

def __init__(self, max_workers, timeout=None):
# Use an internal thread pool to send to popen workers
self._threadpool = concurrent.futures.ThreadPoolExecutor(max_workers=max_workers)
self._timeout = timeout
self._worker_map = {}
self._lock = threading.Lock()

def __del__(self):
self._lock.acquire()
for worker in self._worker_map.values():
try:
worker.kill()
except ImportError:
pass
self._lock.release()
self._threadpool.shutdown()

def _worker_run(self, fn, args, kwargs):
"""Internal thread runner."""
self._lock.acquire()
tid = threading.get_ident()
if tid not in self._worker_map:
proc = PopenWorker()
self._worker_map[tid] = proc
else:
proc = self._worker_map[tid]
self._lock.release()

proc.send(fn, args, kwargs, self._timeout)
return proc.recv()

def _worker_run_with_error_catching(self, fn, args, kwargs) -> MapResult:
# pylint: disable=broad-except
try:
return MapResult(status=StatusKind.COMPLETE, value=self._worker_run(fn, args, kwargs))
except TimeoutError as exception:
return MapResult(status=StatusKind.TIMEOUT, value=exception)
except Exception as exception:
return MapResult(status=StatusKind.EXCEPTION, value=exception)

def submit(self, fn, *args, **kwargs) -> concurrent.futures.Future:
"""Submit a new function job to the pool
Parameters
----------
fn : function
The function to be invoked.
args : list
Positional argument.
kwargs : dict
Keyword arguments
Returns
-------
future : concurrent.futures.Future
A future that can be used to access the result.
"""
# pylint: disable=unnecessary-lambda
worker = lambda *args: self._worker_run(*args)
return self._threadpool.submit(worker, fn, args, kwargs)

def map_with_error_catching(self, fn, iterator):
"""Same as map, but catches exceptions and return them instead.
Parameters
----------
fn : function
The function to be invoked.
iterator : Iterator
Input iterator.
Returns
-------
out_iter : Iterator[MapResult]
The result iterator.
"""
worker = lambda x: self._worker_run_with_error_catching(fn, (x,), None)
return self._threadpool.map(worker, iterator)
Loading

0 comments on commit 6f989e7

Please sign in to comment.