Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ETHOSN] Implement tanh operator #10486

Merged
merged 1 commit into from
Mar 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions python/tvm/relay/op/contrib/ethosn.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,12 @@ def qnn_mean_pattern():
)
return pattern

def qnn_tanh_pattern():
pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant())
pattern = is_op("tanh")(pattern)
pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant())
return pattern

def check_conv2d(extract):
"""Check if a conv2d is supported by Ethos-N."""
if not ethosn_available():
Expand Down Expand Up @@ -200,12 +206,20 @@ def check_sigmoid(extract):

return support.sigmoid(extract)

def check_tanh(extract):
"""Check if tanh is supported by Ethos-N."""
if not ethosn_available():
return False

return support.tanh(extract)

return [
("ethos-n.qnn_conv2d", qnn_conv_pattern(), check_conv2d),
("ethos-n.qnn_avg_pool2d", qnn_avg_pool2d_pattern(), check_avg_pool2d),
("ethos-n.qnn_sigmoid", qnn_sigmoid_pattern(), check_sigmoid),
("ethos-n.qnn_fc", qnn_fc_pattern(), check_fc),
("ethos-n.qnn_mean", qnn_mean_pattern(), check_mean),
("ethos-n.qnn_tanh", qnn_tanh_pattern(), check_tanh),
]


Expand Down
28 changes: 28 additions & 0 deletions src/relay/backend/contrib/ethosn/codegen.cc
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,10 @@ void InferTensorsVisitor::InferCall(const CallNode* cn) {
MeanParams params;
err += EthosnAPI::Mean(cn->op.as<FunctionNode>()->body, &params);
tensor_table_[cn->args[0]] = {params.input_info};
} else if (IsEthosnFunc(call, "ethos-n.qnn_tanh")) {
TanhParams params;
err += EthosnAPI::Tanh(cn->op.as<FunctionNode>()->body, &params);
tensor_table_[cn->args[0]] = {params.input_info};
} else if (IsEthosnOp(call, "qnn.concatenate")) {
ConcatenateParams params;
err = EthosnAPI::Concatenate(call, &params);
Expand Down Expand Up @@ -283,6 +287,9 @@ sl::TensorsAndId ConstructNetworkVisitor::HandleCall(const CallNode* cn) {
} else if (IsEthosnFunc(call, "ethos-n.qnn_mean")) {
if ((err = MakeMeanLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
} else if (IsEthosnFunc(call, "ethos-n.qnn_tanh")) {
if ((err = MakeTanhLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
} else if (IsEthosnOp(call, "qnn.concatenate")) {
if ((err = MakeConcatenateLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
Expand Down Expand Up @@ -473,6 +480,18 @@ EthosnError ConstructNetworkVisitor::MakeMeanLayer(const Call& call,
return EthosnError();
}

EthosnError ConstructNetworkVisitor::MakeTanhLayer(const Call& call,
sl::TensorAndId<sl::Operand>* out) {
auto input = operand_table_[call->args[0]][0];

try {
*out = AddTanh(network_, *input);
} catch (const sl::NotSupportedException& e) {
return EthosnError(e.what());
}
return EthosnError();
}

EthosnError ConstructNetworkVisitor::MakeConcatenateLayer(const Call& call,
sl::TensorAndId<sl::Operand>* out) {
ConcatenateParams params;
Expand Down Expand Up @@ -768,6 +787,15 @@ TVM_REGISTER_GLOBAL("relay.ethos-n.support.mean")
err += EthosnError(reason);
});

TVM_REGISTER_GLOBAL("relay.ethos-n.support.tanh")
.set_body([](tvm::TVMArgs args, tvm::TVMRetValue* rv) {
Call call = args[0];
TanhParams params;
auto err = EthosnAPI::Tanh(call, &params);
err += EthosnCompiler::SupportedSetup();
*rv = !err && EthosnCompiler::GetSupported()->IsTanhSupported(params.input_info);
});

TVM_REGISTER_GLOBAL("relay.ethos-n.support.concatenate")
.set_body([](tvm::TVMArgs args, tvm::TVMRetValue* rv) {
Call call = args[0];
Expand Down
1 change: 1 addition & 0 deletions src/relay/backend/contrib/ethosn/codegen_ethosn.h
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,7 @@ class ConstructNetworkVisitor : public MixedModeVisitor, private ErrorReportingP
EthosnError MakeAdditionLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeSigmoidLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeMeanLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeTanhLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeConcatenateLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeSplitLayer(const Call& call, sl::TensorsAndId* outs);
EthosnError MakeDepthToSpaceLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
Expand Down
28 changes: 28 additions & 0 deletions src/relay/backend/contrib/ethosn/ethosn_api.cc
Original file line number Diff line number Diff line change
Expand Up @@ -411,6 +411,34 @@ EthosnError EthosnAPI::Mean(const Expr& expr, MeanParams* params) {
return err;
}

EthosnError EthosnAPI::Tanh(const Expr& expr, TanhParams* params) {
Call quantize = Downcast<Call>(expr);
Call tanh = Downcast<Call>(quantize->args[0]);
Call dequantize = Downcast<Call>(tanh->args[0]);
// Create input info
const auto* input_dtype = quantize->checked_type().as<TensorTypeNode>();
sl::TensorShape input_tensor_shape = {1, 1, 1, 1};
sl::DataType input_tensor_dtype;
EthosnError err = Tvm2Npu(input_dtype->shape, &input_tensor_shape);
err += Tvm2Npu(input_dtype->dtype, &input_tensor_dtype);
float input_sc;
int input_zp;
err += AsConstant(dequantize->args[2], &input_zp);
err += AsConstant(dequantize->args[1], &input_sc);
float output_sc;
int output_zp;
err += AsConstant(quantize->args[2], &output_zp);
err += AsConstant(quantize->args[1], &output_sc);
auto test_zp = input_dtype->dtype.is_uint() ? 128 : 0;
if (output_zp != test_zp || output_sc != 0.0078125f) {
err += EthosnError(ErrStrm() << "output quantization params=(" << output_zp << ", " << output_sc
<< "), must = (" << test_zp << ", 1/256)");
}
params->input_info = sl::TensorInfo(input_tensor_shape, input_tensor_dtype, sl::DataFormat::NHWC,
sl::QuantizationInfo(input_zp, input_sc));
return err;
}

EthosnError EthosnAPI::Concatenate(const Expr& expr, ConcatenateParams* params) {
Call call = Downcast<Call>(expr);
const auto& attrs = call->attrs.as<ConcatenateAttrs>();
Expand Down
6 changes: 6 additions & 0 deletions src/relay/backend/contrib/ethosn/ethosn_api.h
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,10 @@ struct MeanParams {
sl::TensorInfo input_info;
};

struct TanhParams {
sl::TensorInfo input_info;
};

struct ConcatenateParams {
sl::QuantizationInfo qInfo;
sl::ConcatenationInfo concat_info = sl::ConcatenationInfo(1, qInfo);
Expand Down Expand Up @@ -198,6 +202,8 @@ class EthosnAPI {
static EthosnError Sigmoid(const Expr& expr, SigmoidParams* params);
/*! \brief Extract the Support Library mean params from a mean func */
static EthosnError Mean(const Expr& expr, MeanParams* params);
/*! \brief Extract the Support Library tanh params from a Relay an ethos-n tanh func */
static EthosnError Tanh(const Expr& expr, TanhParams* params);
/*! \brief Extract the Support Library concatenate params from a Relay qnn.concatenate call */
static EthosnError Concatenate(const Expr& expr, ConcatenateParams* params);
/*! \brief Extract the Support Library split params from a Relay split call */
Expand Down
80 changes: 80 additions & 0 deletions tests/python/contrib/test_ethosn/test_tanh.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Arm(R) Ethos(TM)-N NPU integration tanh tests"""

import pytest
import numpy as np
import tvm
from tvm import relay
from tvm.testing import requires_ethosn
from . import infrastructure as tei


def _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype):
a = relay.var("a", shape=shape, dtype=dtype)
dequantize = relay.qnn.op.dequantize(
a,
input_scale=relay.const(input_sc, "float32"),
input_zero_point=relay.const(input_zp, "int32"),
)
tanh = relay.tanh(dequantize)
model = relay.qnn.op.quantize(
tanh,
output_scale=relay.const(output_sc, "float32"),
output_zero_point=relay.const(output_zp, "int32"),
out_dtype=dtype,
)
return model


@requires_ethosn
@pytest.mark.parametrize("shape", [(1, 512, 512, 3)])
manupak marked this conversation as resolved.
Show resolved Hide resolved
def test_tanh(shape):
np.random.seed(0)
inputs = {
"a": tvm.nd.array(np.random.randint(0, high=255, size=shape, dtype="uint8")),
}
outputs = []
for npu in [False, True]:
model = _get_model(shape, 120, 0.0250629, 128, 0.0078125, "uint8")
mod = tei.make_module(model, [])
outputs.append(tei.build_and_run(mod, inputs, 1, {}, npu=npu))

tei.verify(outputs, "uint8", 1)


@requires_ethosn
@pytest.mark.parametrize(
"shape, input_zp, input_sc, output_zp, output_sc, dtype, err_msg",
[
(
(1, 16, 16, 16),
120,
0.0250629,
64,
0.0078125,
"uint8",
"output quantization params=(64, 0.0078125), must = (128, 1/256);",
)
],
)
def test_tanh_failure(shape, input_zp, input_sc, output_zp, output_sc, dtype, err_msg):
model = _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype)
model = tei.make_ethosn_composite(model, "ethos-n.qnn_tanh")
mod = tei.make_ethosn_partition(model)
tei.test_error(mod, {}, err_msg)