Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule] Tuning Script Upgrade #11797

Merged
merged 21 commits into from
Jun 30, 2022
Merged
Show file tree
Hide file tree
Changes from 17 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 59 additions & 91 deletions python/tvm/auto_scheduler/testing/tune_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,18 +15,18 @@
# specific language governing permissions and limitations
# under the License.
# pylint: disable=missing-docstring
from distutils.util import strtobool
import argparse
import json
import os

from distutils.util import strtobool
import numpy as np # type: ignore
import onnx # type: ignore

import tvm
from tvm import auto_scheduler
from tvm import meta_schedule as ms
from tvm import relay
from tvm.meta_schedule.testing.custom_builder_runner import run_module_via_rpc
from tvm.meta_schedule.testing.utils import generate_input_data, f_timer
from tvm.meta_schedule.utils import cpu_count
from tvm.relay.frontend import from_onnx
from tvm.support import describe
Expand Down Expand Up @@ -96,17 +96,23 @@ def _parse_args():
default=100,
)
args.add_argument(
"--cpu-flush",
"--adaptive-training",
type=lambda x: bool(strtobool(x)),
required=True,
help="example: True / False",
default=True,
)
args.add_argument(
"--adaptive-training",
"--cpu-flush",
type=lambda x: bool(strtobool(x)),
required=False,
help="example: True / False",
default=True,
required=True,
)
args.add_argument(
"--backend",
type=str,
choices=["graph", "vm"],
help="example: graph / vm",
required=True,
)
parsed = args.parse_args()
parsed.target = tvm.target.Target(parsed.target)
Expand Down Expand Up @@ -135,6 +141,7 @@ def main():
repeat=ARGS.repeat,
min_repeat_ms=ARGS.min_repeat_ms,
enable_cpu_cache_flush=ARGS.cpu_flush,
timeout=ARGS.rpc_config.session_timeout_sec,
)

if ARGS.target.kind.name == "llvm":
Expand Down Expand Up @@ -163,102 +170,63 @@ def main():
onnx_model = onnx.load(ARGS.onnx_path)
shape_dict = {}
for item in ARGS.input_shape:
print(f" input_name: {item['name']}")
print(f" input_name : {item['name']}")
print(f" input_shape: {item['shape']}")
print(f" input_dtype: {item['dtype']}")
shape_dict[item["name"]] = item["shape"]
mod, params = from_onnx(onnx_model, shape_dict, freeze_params=True)
tasks, task_weights = auto_scheduler.extract_tasks(
mod["main"],
params,
target=ARGS.target,
hardware_params=hardware_params,
)
for idx, (task, task_weight) in enumerate(zip(tasks, task_weights)):
print(f"==== Task {idx}: {task.desc} (weight {task_weight} key: {task.workload_key}) =====")
print(task.compute_dag)

tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
tuner.tune(
auto_scheduler.TuningOptions(
num_measure_trials=ARGS.num_trials,
runner=runner,
measure_callbacks=[
auto_scheduler.RecordToFile(log_file),
],
),
adaptive_training=ARGS.adaptive_training,
)

with auto_scheduler.ApplyHistoryBest(log_file):
with tvm.transform.PassContext(
opt_level=3,
config={"relay.backend.use_auto_scheduler": True},
):
lib = relay.build(
mod,
target=ARGS.target,
params=params,
input_data = {
item["name"]: generate_input_data(item["shape"], item["dtype"]) for item in ARGS.input_shape
}

with ms.Profiler() as profiler:
tasks, task_weights = auto_scheduler.extract_tasks(
mod["main"],
params,
target=ARGS.target,
hardware_params=hardware_params,
)
for idx, (task, task_weight) in enumerate(zip(tasks, task_weights)):
print(
f"==== Task {idx}: {task.desc} "
f"(weight {task_weight} key: {task.workload_key}) ====="
)
graph, rt_mod, params = lib.graph_json, lib.lib, lib.params
input_data = {}
for item in ARGS.input_shape:
input_name, input_shape, input_dtype = item["name"], item["shape"], item["dtype"]
if input_dtype.startswith("float"):
input_data[input_name] = np.random.uniform(size=input_shape).astype(input_dtype)
else:
input_data[input_name] = np.random.randint(
low=0, high=10000, size=input_shape, dtype=input_dtype
print(task.compute_dag)

if ARGS.num_trials > 0:
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
tuner.tune(
auto_scheduler.TuningOptions(
num_measure_trials=ARGS.num_trials,
runner=runner,
measure_callbacks=[
auto_scheduler.RecordToFile(log_file),
],
),
adaptive_training=ARGS.adaptive_training,
)

def f_timer(rt_mod, dev, input_data):
# pylint: disable=import-outside-toplevel
from tvm.contrib.graph_executor import GraphModule

# pylint: enable=import-outside-toplevel

mod = GraphModule(rt_mod["default"](dev))
for input_name, input_value in input_data.items():
mod.set_input(input_name, input_value)
ftimer = mod.module.time_evaluator(
"run",
dev,
min_repeat_ms=500,
repeat=3,
)
results = list(np.array(ftimer().results) * 1000.0) # type: ignore
print("Running time in time_evaluator: ", results)
relay_build = {"graph": relay.build, "vm": relay.vm.compile}[ARGS.backend]
with auto_scheduler.ApplyHistoryBest(log_file):
with tvm.transform.PassContext(
opt_level=3,
config={"relay.backend.use_auto_scheduler": True},
):
lib = relay_build(
mod,
target=ARGS.target,
params=params,
)
print("Tuning Time:")
print(profiler.table())

run_module_via_rpc(
rpc_config=ARGS.rpc_config,
lib=lib,
dev_type=ARGS.target.kind.name,
args=input_data,
continuation=f_timer,
)

def f_per_layer(rt_mod, dev, input_data):
# pylint: disable=import-outside-toplevel
from tvm.contrib.debugger.debug_executor import create

# pylint: enable=import-outside-toplevel
mod = create(graph, rt_mod, dev)
for input_name, input_value in input_data.items():
mod.set_input(input_name, input_value)
graph_nodes = [n["name"] for n in json.loads(graph)["nodes"]]
graph_time = mod.run_individual(number=10, repeat=1, min_repeat_ms=5000)
print("|graph_nodes| = ", len(graph_nodes))
print("|graph_time| = ", len(graph_time))
graph_nodes_time = {k: float(v) for k, v in zip(graph_nodes, graph_time)}
for k, v in graph_nodes_time.items():
print(f"{k} : {v:.3f}")

run_module_via_rpc(
rpc_config=ARGS.rpc_config,
lib=rt_mod,
dev_type=ARGS.target.kind.name,
args=input_data,
continuation=f_per_layer,
continuation=f_timer(ARGS.backend),
backend=ARGS.backend,
)


Expand Down
Loading