Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hexagon] Implement fixed_point_multiply op through intrinsics. #12659

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/topi/hexagon/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,5 @@
from .pooling import *
from .reduce import *
from .resize2d import *
from .tensor_intrin import *
from .qnn import *
7 changes: 4 additions & 3 deletions python/tvm/topi/hexagon/injective.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@

import tvm

import numpy as np


def schedule_injective(outs):
"""Schedule for injective op.
Expand All @@ -37,11 +39,10 @@ def schedule_injective(outs):
outs = [outs] if isinstance(outs, tvm.te.tensor.Tensor) else outs
s = tvm.te.create_schedule([x.op for x in outs])
tvm.te.schedule.AutoInlineInjective(s)

# Fuse axes and vectorize inner 128 elements
# Fuse axes and vectorize inner elements
for x in outs:
fused = s[x].fuse(*x.op.axis)
_, inner = s[x].split(fused, factor=128)
_, inner = s[x].split(fused, factor=128 // np.dtype(x.dtype).itemsize)
s[x].vectorize(inner)
return s

Expand Down
71 changes: 71 additions & 0 deletions python/tvm/topi/hexagon/tensor_intrin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Optimized implementation of q_multiply_shift based on LLVM intrinsics"""

import tvm
from tvm.ir import register_intrin_lowering


def _q_multiply_shift_hexagon(op):
"""
Implementation of q_multiply_shift through hexagon intrinsics vmpyewuh and vmpyowh when q == 31.

Please note that this is introducing a small round-up error for some corner cases with negative
shift argument. This is because we are rounding twice instead than only once. I.e.:

* original q_multiply_shift: round(x*y*2^-s)
* hexagon q_multiply_shift: round(round(x*y)*2^-s)
"""
x = op.args[0]
y = op.args[1]
fractional_bits = op.args[2]
shift = op.args[3]

# Don't use this intrinsic if we don't have a int32x32 vector
# or if we are not multiplying q31 numbers
if x.dtype != "int32x32" or fractional_bits.value != 31:
return op

# Case 1, shift is negative
mul_e_1 = tvm.tir.call_llvm_intrin(
op.dtype, "llvm.hexagon.V6.vmpyewuh.128B", tvm.tir.const(2, "uint32"), x, y
)
mul_o_1 = tvm.tir.call_llvm_intrin(
op.dtype, "llvm.hexagon.V6.vmpyowh.rnd.sacc.128B", tvm.tir.const(3, "uint32"), mul_e_1, x, y
)
fixup = mul_o_1 & (-shift)
round_mul = mul_o_1 + fixup
out_negative_shift = tvm.tir.call_llvm_intrin(
op.dtype, "llvm.hexagon.V6.vaslwv.128B", tvm.tir.const(2, "uint32"), round_mul, shift
)

# Case 2, shift is positive
x = x * (1 << (shift))
mul_e_2 = tvm.tir.call_llvm_intrin(
op.dtype, "llvm.hexagon.V6.vmpyewuh.128B", tvm.tir.const(2, "uint32"), x, y
)
mul_o_2 = tvm.tir.call_llvm_intrin(
op.dtype, "llvm.hexagon.V6.vmpyowh.rnd.sacc.128B", tvm.tir.const(3, "uint32"), mul_e_2, x, y
)

# Select depending on the shift
return tvm.tir.Select(shift < 0, out_negative_shift, mul_o_2)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The mul_o_2 is just round(x*y). There is no shift in it.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

hm... Maybe I misunderstood the question, but I put shift separately before mul_o_2:
x = x * (1 << (shift))

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry, I misread it as a part of the comment...



register_intrin_lowering(
"tir.q_multiply_shift", target="hexagon", f=_q_multiply_shift_hexagon, level=99
)
140 changes: 140 additions & 0 deletions tests/python/contrib/test_hexagon/test_fixed_point_multiply.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import tvm.testing
from tvm import relay
from tvm.relay.backend import Executor
from tvm.contrib.hexagon.session import Session

import re
import numpy as np


@tvm.testing.requires_hexagon
def test_vmpy_intrinsic_presence():
"""
check intrinsic lowering for fixed_point_multiply operation
"""
ishape = (1, 128)
a = relay.var("a", relay.TensorType(ishape, "int32"))

y = relay.fixed_point_multiply(a, 1395864320, 1) # 1.3

relay_mod = tvm.IRModule.from_expr(y)

params = {}
target_hexagon = tvm.target.hexagon("v68")
executor = Executor("graph", {"link-params": True})

with tvm.transform.PassContext(opt_level=3):
hexagon_lowered = tvm.relay.build(
relay_mod,
tvm.target.Target(target_hexagon, host=target_hexagon),
executor=executor,
params=params,
)

asm = hexagon_lowered.lib.get_source("asm")

# Check that 'vmpye' instruction was generated in asm file.
vmpye_regex = re.compile(r"v\d{1,2}.w = vmpye\(v\d{1,2}.w,v\d{1,2}.uh\)")
assert vmpye_regex.search(asm) is not None

# Check that 'vmpyo' instruction was generated in asm file.
vmpyo_regex = re.compile(r"v\d{1,2}.w \+= vmpyo\(v\d{1,2}.w,v\d{1,2}.h\):<<1:rnd:sat:shift")
assert vmpyo_regex.search(asm) is not None


def build_module(relay_mod, target):
params = {}
executor = Executor("graph", {"link-params": True})
lowered = tvm.relay.build(
relay_mod,
tvm.target.Target(target, host=target),
executor=executor,
params=params,
)
return lowered


def run_module(graph_mod, inputs):
graph_mod.set_input(**inputs)
graph_mod.run()
output = graph_mod.get_output(0).numpy()
return output


@tvm.testing.requires_hexagon
def test_fixed_point_multiply_positive_shift(hexagon_session: Session):
ishape = (6, 32)
a = relay.var("a", relay.TensorType(ishape, "int32"))
multiplier, shift = (1395864320, 1) # 1.3
fpm = relay.fixed_point_multiply(a, multiplier, shift)
relay_mod = tvm.IRModule.from_expr(fpm)

with tvm.transform.PassContext(opt_level=3):
# Compile for Hexagon...
hexagon_lowered = build_module(relay_mod, tvm.target.hexagon("v68"))

# Compile for LLVM...
llvm_lowered = build_module(relay_mod, tvm.target.Target("llvm"))

data_in = np.arange(-96, 96).reshape(ishape)
inputs = {"a": data_in}

# Run hexagon...
graph_mod = hexagon_session.get_executor_from_factory(hexagon_lowered)
hexagon_output = run_module(graph_mod, inputs)

# Run llvm...
llvm_graph_mod = tvm.contrib.graph_executor.GraphModule(llvm_lowered["default"](tvm.cpu(0)))
expected_output = run_module(llvm_graph_mod, inputs)

tvm.testing.assert_allclose(hexagon_output, expected_output)


@tvm.testing.requires_hexagon
def test_fixed_point_multiply_negative_shift(hexagon_session: Session):
ishape = (6, 32)
a = relay.var("a", relay.TensorType(ishape, "int32"))
multiplier, shift = (1288490240, -2) # 0.15
fpm = relay.fixed_point_multiply(a, multiplier, shift)
relay_mod = tvm.IRModule.from_expr(fpm)

with tvm.transform.PassContext(opt_level=3):
# Compile for Hexagon...
hexagon_lowered = build_module(relay_mod, tvm.target.hexagon("v68"))

# Compile for LLVM...
llvm_lowered = build_module(relay_mod, tvm.target.Target("llvm"))

data_in = np.arange(-96, 96).reshape(ishape)
inputs = {"a": data_in}

# Run hexagon...
graph_mod = hexagon_session.get_executor_from_factory(hexagon_lowered)
hexagon_output = run_module(graph_mod, inputs)

# Run llvm...
llvm_graph_mod = tvm.contrib.graph_executor.GraphModule(llvm_lowered["default"](tvm.cpu(0)))
expected_output = run_module(llvm_graph_mod, inputs)

tvm.testing.assert_allclose(hexagon_output, expected_output, atol=1)


if __name__ == "__main__":
tvm.testing.main()